Dr. Persson studies the physics and chemistry of materials using atomistic computational methods and high-performance computing technology, particularly for clean-energy production and storage applications.

In JCAP, Dr. Persson’s research centers around photocathodes which carry out the carbon dioxide reduction reaction that are a central to the establishment of efficient, sustainable CO2 reduction.  Photoelectrode architectures that include a semiconductor-liquid junction and exclude multiple buried p-n junctions are desirable for maximal efficiency and scalability of solar-fuel generation.  To realize this design paradigm, new light absorbers which meet a host of design criteria must be discovered.  Dr. Persson’s team will identify the most promising light absorbers for solar-fuels applications through a multi-faceted materials-discovery platform that combines high-throughput computation and experiments.


Selected Publications

Singh, A., Montoya, J., Gregoire, J., Persson, K. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nature Communications, 10, 443, DOI: https://doi.org/10.1038/s41467-019-08356-1 (2019).

Zhou, L., Shinde, A., Montoya, J., Singh, A., Gul, S., Yano, J., Ye, Y., Crumlin, E., Richter, M., Cooper, J., Stein, H., Haber, J., Persson, K., Gregoire, J. Rutile alloys in the Mn-Sb-O system stabilize Mn+3 to enable oxygen evolution in strong acid. ACS Catalysis, DOI: 10.1021/acscatal.8b02689 (2018).

Green, M. L., Choi, C. L., Hattrick-Simpers, J. R., Joshi, A. M., Takeuchi, I., Barron, S. C., Campo, E., Chiang, T., Empadocles, S., Gregoire, J. M., Kusne, A. G., Martin, J., Mehta, A., Persson, K., Trautt, Z., Van Duren, J., and Zakutayev, A. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Applied Physics Review 4, 011105, DOI: 10.1063/1.4977487 (2017).

Singh, A. K., Zhou, L., Shinde, A., Suram, S. K., Montoya, J. H., Winston, D., Gregoire, J. M., Persson, K. A. Electrochemical Stability of Metastable Materials. Chemistry of Materials, DOI: 10.1021/acs.chemmater.7b03980 (2017).

Yan, Q. et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1619940114 (2017).

Toma, et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 7, 12012, DOI: 10.1038/ncomms12012 (2016).

Zhou, L. et al. Stability and Self-passivation of Copper Vanadate Photoanodes under Chemical, Electrochemical, and Photoelectrochemical Operation. Physical Chemistry Chemical Physics, DOI: 10.1039/C6CP00473C (2016).

Yan, Q. et al. Mn2V2O7: An Earth Abundant Light Absorber for Solar Water Splitting. Advanced Energy Materials, DOI: 10.1002/aenm.201401840 (2015).

Yu, J. et al. First-principles study of electronic structure and photocatalytic properties of MnNiO3 as an alkaline oxygen-evolution photocatalyst. Chemical Communications 51, 2867-2870, DOI: 10.1039/C4CC08111K (2015).

For a complete list of publications, see JCAP publications page.


Additional Information

Persson Group:  http://perssongroup.lbl.gov/