Dr. Bell’s interests are focused on experimental and theoretical studies of heterogeneous catalysis with an emphasis on defining the composition and structure of active sites and the mechanism and kinetics of reactions.

In JCAP, he conducts fundamental studies of the electrochemical oxidation of water and the reduction of CO2, experimental and theoretical investigations of catalyst structure-function relationships, and simulation of electrochemical cells used for the reduction of CO2 to fuels.


Selected Publications

Clark, E., Ringe, S., Tang, M., Walton, A., Hahn, Jaramillo, T., Chan, K., Bell, A. Influence of Atomic Surface Structure on the Activity of Ag for the Electrochemical Reduction of CO2 to CO. ACS Catalysis, 9, 4006-4014, DOI: 10.1021/acscatal.9b00260 (2019).

Clark, E., Wong, J., Garza, A., Lin, Z., Head-Gordon, M., Bell, A. Explaining the Incorporation of Oxygen Derived from Solvent Water into the Oxygenated Products of CO Reduction over Cu. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b13201 (2019).

Bell, A. T. Chapter 3 Understanding the Effects of Composition and Structure on the Oxygen Evolution Reaction (OER) Occurring on NiFeOx Catalysts, Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 79-116, DOI: 10.1039/9781788010313-00079 (2018).

Clark, E. and Bell, A. Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO2. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b04058 (2018).

Clark, E., Resasca, J., Landers, A., Lin, A., Chng, L.-T., Walton, A., Hahn, C., Jaramillo, T., Bell, A. Data Acquisition Protocols and Reporting Standards for Studies of the Electrochemical Reduction of Carbon Dioxide. ACS Catalysis, DOI: 10.1021/acscatal.8b01340 (2018).

Garza, A. J., Bell, A. T., Head-Gordon, M. Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO2 on Copper? J. Phys. Chem. Lett. 9(3), 601-601, DOI: 10.1021/acs.jpclett.7b03180 (2018).

Garza, A. J., Bell, A. T., Head-Gordon, M. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C-2 Products. ACS Catalysis, 8(2), 1490-1499, DOI: 10.1021/acscatal.7b03477 (2018).

Garza, A., Bell, A., Head-Gordon, M. Nonempirical Meta-Generalized Gradient Approximations for Modeling Chemisorption at Metal Surfaces. J. Chem. Theory Comput., DOI: 10.1021/acs.jctc.8b00288 (2018).

Weng, L.-C., Bell, A., Weber, A. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys., DOI: 10.1039/C8CP01319E (2018).

Clark, E. L., Singh, M. R., Kwon, Y. & Bell, A. T. Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO2. Analytical Chemistry 87(15), 8013-8020, DOI: 10.1021/acs.analchem.5b02080 (2015).

Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society 137, 1305–1313, DOI: 10.1021/ja511559d (2015).

Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L. & Bell, A. T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b00105 (2015).

Singh, M. R., Clark, E. L. & Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Physical Chemistry Chemical Physics 17, 18924-18936, DOI: 10.1039/C5CP03283K (2015).

For complete list of publications, see JCAP publications page.


Additional Information

Bell Group site:  http://www.cchem.berkeley.edu/atbgrp/