Dr. Abild-Pedersen’s research focuses on efforts to advance understanding in thermal and electrochemical heterogeneous catalysis by developing catalyst design rules. He is particularly interested in fundamental questions of surface bonding trends, structural effects, catalyst stability, and identification of descriptors of surface reactivity.

In JCAP Dr. Abild-Pedersen will focus on linking the catalyst composition and structure with the CO2 reduction electro catalyst performance and use this insight to identify new electrode materials for CO2 reduction.


Selected Papers

Liu, X., Schlexer, P., Xiao, J., Ji, Y., Wang, L., Sandberg, R., Tang, M., Brown, K., Peng, H., Ringe, S., Hahn, C., Jaramillo, T., Norskov, J., Chan, K. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nature Comm., 10, DOI: 10.1038/s41467-018-07970-9 (2019).

Jiang, K., Sandberg, R. B., Akey, A. J., Liu, X., Bell, D. C., Norskov, J. K., Chan, K., Wang, H. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nature Catalysis, DOI: 10.1038/s41929-017-0009-x (2018).

Kirk, C., Chen, L. D., Siahrostami, S., Karamad, M., Badjich, M., Voss, J., Norskov, J., Chan, K. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Central Science, 3(12), 1286-1293, DOI: 10.1021/acscentsci.7b00442 (2017).

Resasco, J., Chen, L. D., Clark, E., Tsai, C., Hahn, C., Jaramillo, T. F., Chan, K., and Bell, A. T. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b06765 (2017).

Liu, X., Xiao, J., Peng, H., Hong, X., Chan, K., and Norskov, J. K. Understanding trends in electrochemical carbon dioxide reduction rates. Nature Communications, DOI: 10.1038/ncomms15438 (2017).

Additional Information

Electronic Materials Program:  https://suncat.stanford.edu/pi/frank-abild-pedersen