Often taking place in close collaboration with experiments, Dr. Neaton’s current research emphasizes:  the development and use of ab initio and analytical methods for the understanding of complex and correlated condensed phases of organic and inorganic solids, nanostructures, and interfaces; electronic excited state phenomena, including quasiparticle and optical excitations; weak interactions in nanoporous materials; and low-dimensional transport behavior, particularly in single-molecule junctions.  An important context for his research of late has been renewable energy, where novel materials, excited states, oxides, organics, and interfaces feature prominently.

In JCAP, Dr. Neaton s emphasis is on the development and use of high-throughput computational methods, in conjunction with advanced electronic structure approaches for parameter-free calculation of excited states and charge dynamics, for discovery and prediction of new photocatalytically-active materials for, and phenomena relevant to, CO2 reduction and water oxidation.


Selected Publications

Cooper, J. K., Reyes-Lillo, S., Hess, L., Jiang, C.-M., Neaton, J., Sharp, I. Physical Origins of the Transient Absorption Spectra and Dynamics in Thin-Film Semiconductors: The Case of BiVO4. J. Phys. Chem. C DOI: 10.1021/acs.jpcc.8b06645 (2018).

Newhouse, P., Guevarra, D., Umehara, M., Reyes-Lillo, S., Zhou, L., Boyd, D., Suram, S., Cooper, J., Haber, J., Neaton, J., Gregoire, J. Combinatorial alloying improves bismuth vanadate photoanodes via reduced monoclinic distortion. Energy & Environmental Science, DOI: 10.1039/C8EE00179K (2018).

Suram, S. K., Zhou, L., Shinde, A., Yan, Q., Yu, Y., Umehara, M., Stein, H. S., Neaton, J., and Gregoire, J. Discovery of alkaline-stable nickel manganese oxides with visible photoresponse for solar fuels photoanodes. Chemical Communications, DOI: 10.1039/C7CC08002F (2018).

Zhou, L., Shinde, A., Suram, S., Stein, H., Bauers, S., Zakutayev, A., DuChene, J., Liu, G., Peterson, E., Neaton, J., Gregoire, J. Bi-containing n-FeWO4 Thin Films Provide the Largest Photovoltage and Highest Stability for a sub-2 eV Band Gap Photoanode. ACS Energy Letters, DOI: 10.1021/acsenergylett.8b01514 (2018).

Newhouse, P. F., Reyes-Lillo, S. E., Li, G., Zhou, L., Shinde, A., Guevarra, D., Suram, S. K., Soedarmadji, E., Richetr, M. H., Qu, X., Persson, K., Neaton, J. B., Gregoire, J. M. Discovery and Characterization of a Pourbaix Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chem. Mater, DOI: 10.1021/acs.chemmater.7b03591 (2017).

Shinde, A., Suram, S. K., Yan, Q., Zhou, Q., Zhou, L., Singh, A. K., Persson, K. A., Neaton, J. B., Gregoire, J. M. Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. ACS Energy Letters, 2, 2307-2312, DOI: 10.1021/acsenergylett.7b00607 (2017).

Yan, Q. et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1619940114 (2017).

Newhouse, P. et al. Solar Fuels Photoanodes Prepared by Inkjet Printing of Copper Vanadates. Journal of Materials Chemistry A, DOI: 10.1039/C6TA01252C (2016).

Shinde, A. et al. The role of the CeO2/BiVO4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes. Journal of Materials Chemistry A, DOI: 10.1039/C6TA04746G (2016).

Yan, Q. et al. Mn2V2O7: An Earth Abundant Light Absorber for Solar Water Splitting. Advanced Energy Materials, DOI: 10.1002/aenm.201401840 (2015).

Yu, J. et al. First-principles study of electronic structure and photocatalytic properties of MnNiO3 as an alkaline oxygen-evolution photocatalyst. Chemical Communications 51, 2867-2870, DOI: 10.1039/C4CC08111K (2015).

Zhou, L. et al. High Throughput Discovery of Solar Fuels Photoanodes in the CuO−V2O5 System. Advanced Energy Materials, DOI: 10.1002/aenm.201500968 (2015).

For a complete list of publications, see JCAP publications page.


Additional Information

Neaton Group:  http://commons.lbl.gov/display/neatongroup/Home/