Dr. Gregoire’s research interests include: high-throughput materials discovery, combinatorial materials synthesis, high-throughput electrochemistry, connecting materials theory and experiments, synchrotron characterization, electrochemical stability screening, semiconductor-metal interfaces, mathematics of compositions spaces and phase diagrams, applications of machine learning in materials science, electrocatalysts for solar fuels and fuel cell reactions, photoelectrochemistry, experiment automation, and data management.

Dr. Gregoire’s JCAP research focuses on the discovery of electrocatalysts and photoelectrocatalysts for the oxygen evolution and carbon dioxide reduction reactions (OER and CO2RR).  This research involves the development of high-throughput synthesis, screening and characterization techniques and their application to explore new materials.  To guide the high-throughput experiments and interpret the results, his group works closely with materials theory, synchrotron characterization, materials integration, benchmarking, and test-bed research efforts.

Dr. Gregoire is the Thrust 2 Coordinator for Photoelectrocatalysis.

 

Selected Publications

Singh, A., Montoya, J., Gregoire, J., Persson, K. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nature Communications, 10, 443, DOI: https://doi.org/10.1038/s41467-019-08356-1 (2019).

Stein, H., Guevarra, D., Shinde, A., Jones, R., Gregoire, J., Haber, J. Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)Ox composition and pH space. Material Horizons, DOI: 10.1039/C8MH01641K (2019).

Stein, H., Soedarmadji, E., Newhouse, P., Guevarra, D., Gregoire, J. Synthesis, optical imaging, and absorption spectroscopy data for 179072 metal oxides. Scientific Data, DOI: https://doi.org/10.1038/s41597-019-0019-4 (2019).

Umehara, M., Stein, H., Guevarra, D., Newhouse, P., Boyd, D., Gregoire, J. Analyzing machine learning models to accelerate generation of fundamental materials insights. Nature Computational Materials, DOI: https://doi.org/10.1038/s41524-019-0172-5 (2019).

Gregoire, J. M., Boyd, D. A., Guevarra, D., Haber, J. A., Jones, R., Kan, K., Marcin, M., Newhouse, P. F., Shinde, A., Soedarmadji, E., Suram, S. K., Zhou, L. Chapter 9 High Throughput Experimentation for the Discovery of Water Splitting Materials. Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 305-340, DOI: 10.1039/9781788010313-00305 (2018).

Jones, R., Wang, Y., Lai, Y., Shinde, A., Gregoire, J. Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction. Review of Scientific Instruments, 89, 124102, DOI: https://doi.org/10.1063/1.5049704 (2018).

Newhouse, P., Guevarra, D., Umehara, M., Reyes-Lillo, S., Zhou, L., Boyd, D., Suram, S., Cooper, J., Haber, J., Neaton, J., Gregoire, J. Combinatorial alloying improves bismuth vanadate photoanodes via reduced monoclinic distortion. Energy & Environmental Science, DOI: 10.1039/C8EE00179K (2018).

Newhouse, P. Guevarra, D., Umehara, M., Boyd, D., Zhou, L., Cooper, J., Haber, J., Gregoire, J. Multi-modal optimization of bismuth vanadate photoanodes via combinatorial alloying and hydrogen processing. Chemical Communications, DOI: 10.1039/C8CC07156J (2018).

Stein, H., Guevarra, D., Newhouse, P., Soedarmadji, E., Gregoire, J. Machine learning of optical properties of materials – predicting spectra from images and images from spectra. Chemical Sciences, DOI: 10.1039/C8SC03077D (2018).

Zhou, L., Shinde, A., Guevarra, D., Toma, F., Stein, H., Gregoire, J., Haber, J. Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe-Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials, DOI: 10.1021/acsaem.8b01377 (2018).

Zhou, L., Shinde, A., Suram, S., Stein, H., Bauers, S., Zakutayev, A., DuChene, J., Liu, G., Peterson, E., Neaton, J., Gregoire, J. Bi-containing n-FeWO4 Thin Films Provide the Largest Photovoltage and Highest Stability for a sub-2 eV Band Gap Photoanode. ACS Energy Letters, DOI: 10.1021/acsenergylett.8b01514 (2018).

Zhou, L., Shinde, A., Montoya, J., Singh, A., Gul, S., Yano, J., Ye, Y., Crumlin, E., Richter, M., Cooper, J., Stein, H., Haber, J., Persson, K., Gregoire, J. Rutile alloys in the Mn-Sb-O system stabilize Mn+3 to enable oxygen evolution in strong acid. ACS Catalysis, DOI: 10.1021/acscatal.8b02689 (2018).

Newhouse, P. F., Reyes-Lillo, S. E., Li, G., Zhou, L., Shinde, A., Guevarra, D., Suram, S. K., Soedarmadji, E., Richetr, M. H., Qu, X., Persson, K., Neaton, J. B., Gregoire, J. M. Discovery and Characterization of a Pourbaix Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chem. Mater, DOI: 10.1021/acs.chemmater.7b03591 (2017).

Shinde, A., Suram, S. K., Yan, Q., Zhou, Q., Zhou, L., Singh, A. K., Persson, K. A., Neaton, J. B., Gregoire, J. M. Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. ACS Energy Letters, 2, 2307-2312, DOI: 10.1021/acsenergylett.7b00607 (2017).

Singh, A. K., Zhou, L., Shinde, A., Suram, S. K., Montoya, J. H., Winston, D., Gregoire, J. M., Persson, K. A. Electrochemical Stability of Metastable Materials. Chemistry of Materials, DOI: 10.1021/acs.chemmater.7b03980 (2017).

Newhouse, P. et al. Solar Fuels Photoanodes Prepared by Inkjet Printing of Copper Vanadates. Journal of Materials Chemistry A, DOI: 10.1039/C6TA01252C (2016).

Shinde, A. et al. Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials and Interfaces, DOI: 10.1021/acsami.6b06714 (2016).

Shinde, A. et al. The role of the CeO2/BiVO4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes. Journal of Materials Chemistry A, DOI: 10.1039/C6TA04746G (2016).

Haber, J. A., Anzenburg, E., Yano, J., Kisielowski, C. & Gregoire, J. M. Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, DOI: 10.1002/aenm.201402307 (2015).

Shinde, A., Guevarra, D., Haber, J. A., Jin, J. & Gregoire, J. M. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements. J. Mater. Res., DOI: 10.1557/jmr.2014.296 (2015).

Zhou, L. et al. High Throughput Discovery of Solar Fuels Photoanodes in the CuO−V2O5 System. Advanced Energy Materials, DOI: 10.1002/aenm.201500968 (2015).

Haber, J. A. et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy & Environmental Science 7, 682-688, DOI: 10.1039/c3ee43683g (2014).

For a complete list of publications, see JCAP publications page.