+ 2021

  • Abdelsamie, M., Li, T., Babbe, F., Xu, J., Han, Q., Blum, V., Sutter-Fella, C. M., Mitzi, D., Toney, M. Mechanism of Additive-Assisted Room-Temperature Processing of Metal Halide Perovskite Thin Films., ACS Appl. Mater. Interfaces, https://doi.org/10.1021/acsami.0c22630 (2021).

  • Andriuc, O., Siron, M., Monatoya, J., Horton, M., Persson, K., Automated Adsorption Workflow for Semiconductor Surfaces and the Application to Zinc Telluride., J. Chem. Inf. Model, 61 (8), 3908-3916, DOI: https://doi.org/10.1021/acs.jcim.1c00340 (2021).

  • Baricuatro, J. H., Kwon, S., Kim, Y.-G., Cummins, K. D., Naserifar, S., Goddard, W. A. Operando Electrochemical Spectroscopy for CO on Cu(100) at pH 1 to 13: Validation of Grand Canonical Potential Predictions. ACS Catal., 11(5), 3173-3181, https://doi.org/10.1021/acscatal.0c05564 (2021).

  • Berger, E., Jamnuch, S., Uzundal, C., Woodhal, C., et al. Extreme Ultraviolet Second Harmonic Generation Spectroscopy in a Polar Metal. Nano Lett. 21 (14), 6095-6101, DOI: https://doi.org/10.1021/acs.nanolett.1c01502 (2021).

  • Buabthong, P., Evans, J., Rinaldi, K., Kennedy, K., Fu, H., Ifkovits, Z., Kuo, T.-J., Brunschwig, B., Lewis, N. GaAs Microisland Anodes Protected by Amorphous TiO2 Films Mitigate Corrosion Spreading During Water Oxidation in Alkaline Electrolytes., ACS Energy Lett., 6, DOI: https://doi.org/10.1021/acsenergylett.1c01174 (2021).

  • Buckley, A., Cheng, T., Oh, M., Su, G., Garrison, J., Utan, S., Zhu, C., Toste, D., Goddard, W., Toma, F. Approaching 100% Selectivity at Low Potential on Ag for Electrochemical CO2 Reduction to CO Using a Surface Additive., ACS Catal. 11(15), 9034-9042, DOI: https://doi.org/10.1021/acscatal.1c00830 (2021).

  • Bui, J. C., Kim, C., Weber, A., Bell, A. Dynamic Boundary Layer Simulation of Pulsed CO2 Electrolysis on a Copper Catalyst. ACS Energy Lett., 6, https://doi.org/10.1021/acsenergylett.1c00364 (2021).

  • Cooper, J., Zhang, Z., Roychoudhury, S., jjiang, C.-M., Gul, S., Liu, Y.-S., Dhall, R., Ceballos, A., Yano, J., Prendergast, D., Reyes-Lillo, S. E. CuBi2O4: Electronic Structure, Optical Properties, and Photoelectrochemical Performance Limitations of the Photocathode., Chemm. Mater., 33 (3), 934-945, https://doi.org/10.1021/acs.chemmater.0c03930 (2021).

  • Corson, E. R., Creel, E., Kostecki, R., Urban, J., McCloskey, B. D. Effect of pressure and temperature on carbon dioxide reduction at a plasmonically active silver cathode. Electrochimica Acta, 374, 137820, https://doi.org/10.1016/j.electacta.2021.137820 (2021).

  • Desai, D., Zviazhynski, B., Zhou, J., Bernardi, M. Magnetotransport in semiconductors and two-dimensional materials from first principles. Phys. Pev. B 103, L161103, DOI: https://doi.org/10.1103/PhysRevB.103.L161103 (2021).

  • Eichhorn, J., Jiang, C.-M., Cooper, J., Sharp, I., Toma, F. Nanoscale Heterogeneities and Composition–Reactivity Relationships in Copper Vanadate Photoanodes. ACS Appl. Mater. Interfacesm 13(20), 23575-23583, DOI: https://doi.org/10.1021/acsami.1c01848 (2021).

  • Finke, C., Leandri, H., Karumb, E. T., Zheng, D., Hoffmann, M., Fromer, N. Economically advantageous pathways for reducing greenhouse gas emissions from industrial hydrogen under common, current economic conditions. Energy Environ. Sci., https://doi.org/10.1039/D0EE03768K (2021).

  • Guerrero Vela, P., Polk, J., Richter, M., Lopez Ortega, A. Dynamic thermal behavior of polycrystalline LaB6 hollow cathodes., J. Appl. Phys. 130, 083303, DOI: https://doi.org/10.1063/5.0058607 (2021).

  • Houle, F., Miles, R., Pollak, C., Reid, J. A purely kinetic description of the evaporation of water droplets., J. Chem. Phys., 154 (5), 054501, https://doi.org/10.1063/5.0037967 (2021).

  • Ifkovits, Z., Evans, J., Meier, M., Papadantonakis, K., Lewis, N. Decoupled electrochemical water-splitting systems: a review and perspective., Energy Environ. Sci., 14, 4740-4759, DOI: DOI https://doi.org/10.1039/D1EE01226F (2021).

  • Jiang, H., Tao, X., Kammler, M., Ding, F., Wodtke, A., Kandratsenka, A., Miller, T., Bunermann, O. Small Nuclear Quantum Effects in Scattering of H and D from Graphene. Phys. Chem. Lett., 12 (7), 1991–1996, https://doi.org/10.1021/acs.jpclett.0c02933 (2021).

  • Jiang, S., Link, A., Canning, D., Fooks, J. et al. Enhancing positron production using front surface target structures., Applied Physics Letters, 118 (9), 094101, https://doi.org/10.1063/5.0038222 (2021).

  • Kennedy, K. M., Kempler, P. A., Caban-Acevedo, M., Papadantonakis, K., Lewis, N. S. Primary Corrosion Processes for Polymer-Embedded Free-Standing or Substrate-Supported Silicon Microwire Arrays in Aqueous Alkaline Electrolytes. Nano. Lett., 21 (2), 1056-1061, https://doi.org/10.1021/acs.nanolett.0c04298 (2021).

  • Kim, C., Cho, K., Park, K., Kim, J., Yun, G., Toma, F., Gereige, I., Jung, H. Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2. Advanced Functional Materials, DOI: https://doi.org/10.1002/adfm.202102142 (2021).

  • Kistler, T., Um, M., Cooper, J., Sharp, I., Agbo, P. Monolithic Photoelectrochemical CO2 Reduction Producing Syngas at 10% Efficiency. Advanced Energy Materials, DOI: https://doi.org/10.1002/aenm.202100070 (2021).

  • Koshy, D., Nathan, S., Asundi, A., Abdellah, A., Dull, S., Cullen, D., Higgins, D., Bao, Z., Bent, S., Jaramillo, T. Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO2 Conversion with Carbon-Based Materials. Angewandte Chemie, DOI: https://doi.org/10.1002/anie.202101326 (2021).

  • Kwon, S., Kim, Y.-G., Baricuatro, J., Goddard, W. Dramatic Change in the Step Edges of the Cu(100) Electrocatalyst upon Exposure to CO: Operando Observations by Electrochemical STM and Explanation Using Quantum Mechanical Calculations., ACS Catal, 11(19), 12068-12074, DOI: https://doi.org/10.1021/acscatal.1c02844 (2021).

  • Landers, A., koshy, D., Lee, S., Drisdell, W., Davis, R., Hahn, C., Mehta, A., Jaramillo, T. A refraction correction for buried interfaces applied to in situ grazing-incidence X-ray diffraction studies on Pd electrodes. J. Synchrotron Rad., 28, 919-923, DOI: https://doi.org/10.1107/S1600577521001557 (2021).

  • Landers, A., Peng, H., Koshy, D., Lee, S. H., Feaster, J., Lin, J., Beeman, J., Higgins, D., Yano, J., Drisdell, W., Davis, R., Bajdich, M., Abild-Pedersen, F., Mehta, A., Jaramillo, T., Hahn, C. Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal In Situ X-ray Diffraction, Coulometry, and Computational Study. Chem. Mater., 33(15), 5872-5884, DOI: https://doi.org/10.1021/acs.chemmater.1c00291 (2021).

  • Lee, N., Chen, H., Zhou, J., Bernardi, M. Facile ab initio approach for self-localized polarons from canonical transformations. Phys. Rev. Materials 5, 063805, DOI: https://doi.org/10.1103/PhysRevMaterials.5.063805 (2021).

  • Li, R., Cheng, W., Richter, M., DuChene, J., Tian, W., Li, C., Atwater, H. Unassisted Highly Selective Gas-Phase CO2 Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H2O as an Electron Donor. ACS Energy Lett. 6(5), 1849-1856, DOI: https://doi.org/10.1021/acsenergylett.1c00392 (2021).

  • Li, H., Yu, P., Lei, R., Yang, F., Wen, P., Ma, X., Zeng, G., Guo, J., Toma, F..M., Qiu, Y., Geyer, S..M., Wang, X., Cheng, T. and Drisdell, W. (2021), Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene. Angew. Chem. Int. Ed., DOI: https://doi.org/10.1002/anie.202109600 (2021).

  • Lindley, S., An, Q., Goddard, W., Cooper, J. Spatiotemporal Temperature and Pressure in Thermoplasmonic Gold Nanosphere–Water Systems. ACS Nano, https://doi.org/10.1021/acsnano.0c09804 (2021).

  • Liu, G., Lee, M., Kwon, S., Zeng, G., Eichhorn, J., Bucklet, A., Toste, D., Goddard, W., Toma, F. CO2 reduction on pure Cu produces only H2 after subsurface O is depleted: Theory and experiment. PNAS, 118 (23), e2012649118, DOI: https://doi.org/10.1073/pnas.2012649118 (2021).

  • Liu, Y., Qiu, H., Li, J., Guo, L., Ager, J. Tandem Electrocatalytic CO2 Reduction with Efficient Intermediate Conversion over Pyramid-Textured Cu–Ag Catalysts. ACS Appl. Mater. Interfaces 13(34), 40513-40521, DOI: https://doi.org/10.1021/acsami.1c08688 (2021).

  • Molina-Ruiz, M., Rosen, J., Jacks, H. C., Abernathy, M. R., Metcalf, T. H., Liu, X., DuBois, J. L., Hellman, F. Origin of mechanical and dielectric losses from two-level systems in amorphous silicon. Phys. Rev. Materials, 5, 035601, https://doi.org/10.1103/PhysRevMaterials.5.035601 (2021).

  • Nishimura, Y., Peng, H.-J., Nitopi, S., Bajdich, M., Wang, L., Morales-Guio, G., Abild-Pedersen, F., Jaramillo, T., Hahn, C. Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration., ACS Appl. Mater. Interfaces, DOI: https://doi.org/10.1021/acsami.1c09128 (2021).

  • Nunez, P., Caban-Acevedo, M., Yu, W., Richter, M., Kennedy, K., Villarino, A., Brunschwig, B., Lewis, N. Origin of the Electrical Barrier in Electrolessly Deposited Platinum Nanoparticles on p-Si Surfaces. J. Phys. Chem. C, 125(32), 17660-17670, DOI: https://doi.org/10.1021/acs.jpcc.1c03072 (2021).

  • Otto, L., Gaulding, A., Chen, C., Kuykendall, T., Hammack, A., Toma, F., Ogletree, F., Aloni, S., Stadler, J., Schwartzberg, A. Methods for tuning plasmonic and photonic optical resonances in high surface area porous electrodes. Nature Scientific Reports, 11, 7656, DOI: https://doi.org/10.1038/s41598-021-86813-y (2021).

  • Ozden, A., Wang, Y., Li, F., Luo, M., Sisler, J., Thevenon, A., Rosas-Hernandez, A., Burdyny, T., Lum, Y., Yedegari, H., Gapie, T., Peters, J., Sargent, E., Sinton, D. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule, 5(3), 706-719, https://doi.org/10.1016/j.joule.2021.01.007 (2021).

  • Peng, H., Tang, M., Liu, X., Lamoureux, F. S., Bajdich, M., Abild-Pedersen, F. The role of atomic carbon in directing electrochemical CO(2) reduction to multicarbon products. Energy Environ. Sci., 14, 473-482, https://doi.org/10.1039/D0EE02826F (2021).

  • Richter, M., Cheng, W.-H., Crumlin, E., Drisdell, W., Atwater, H. A., Schmeiser, D., Lewis, N., Brunschwig, B. S. X-ray Photoelectron Spectroscopy and Resonant X-ray Spectroscopy Investigations of Interactions between Thin Metal Catalyst Films and Amorphous Titanium Dioxide Photoelectrode Protection Layers. Chem. Mater., 33 (4), 1265-1275, https://doi.org/10.1021/acs.chemmater.0c04043 (2021).

  • Richter, M., Peterson, E., Zhou, L., Shinde, A., Newhouse, P., Yan, Q., Fackler, S., Yano, J., Cooper, J., Persson, K. Band Edge Energy Tuning through Electronic Character Hybridization in Ternary Metal Vanadates., Chem. Mater., 33(18), 7242-7253, DOI: https://doi.org/10.1021/acs.chemmater.1c01415 (2021).

  • Schwartz, G., Raj, S., Jamnuch, S., et al., Angstrom-Resolved Interfacial Structure in Buried Organic-Inorganic Junctions., Phys. Rev. Lett., 12, 096801, DOI: https://doi.org/10.1103/PhysRevLett.127.096801 (2021).

  • Shi, Y., Ilic, O., Atwater, H., Greer, J. All-day fresh water harvesting by microstructured hydrogel membranes. Nature Communications, 12, 2797, DOI: https://doi.org/10.1038/s41467-021-23174-0 (2021).

  • Soniat, M., Dischinger, S., Weng, L.-C., Beltran, H. M., Weber, A. Z., Miller, D. J., Houle, F. A. Toward predictive permeabilities: Experimental measurements and multiscale simulation of methanol transport in Nafion., J. Polym Sci., 1– 20, https://doi.org/10.1002/pol.20200771 (2021).

  • Thevenon, A., Rosas-Hernandez, A., Herros, A., Agapie, T., Peters, J. Dramatic HER Suppression on Ag Electrodes via Molecular Films for Highly Selective CO2 to CO Reduction. ACS Catal., 11(8), 4530-4537, DOI: https://doi.org/10.1021/acscatal.1c00338 (2021).

  • Wang, J., Cheng, T., Fenwick, A., Baroud, T., Rosas-Hernandez, A., Ko, J. H., Gan, Q., Goddard, W. A., Grubbs, R. H. Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface. J. Am. Chem. Soc., 143 (7), 2857–2865, https://doi.org/10.1021/jacs.0c12478 (2021).

  • Wang, L., Peng, H., Lamaison, S., Qi, Z., Koshy, D., Stevens, M., Wakerley, D., Zeledon, J., King, L., Zhou, L., Lai, Y., Fontecave, M., Gregoire, J., Abild-Pedersen, F., Jaramillo, T., Hahn, C. Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO. Chem Catalysis, DOI: https://doi.org/10.1016/j.checat.2021.05.006 (2021).

  • Wen, Y., Chen, P., Wang, L., Li, S., Wang, Z., Abed, J., Mao, X., Min, Y., Dinh, C., Luna, P., Huang, R., Zhang, L., Wang, L., Wang, L., Nielsen, R., Li, H. Zhuang, T., Ke, O., Voznyy, O., Hu, Y., Li, Y., Goddard, W., Zhang, B., Peng, H., Sargent, E. Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. J. Am. Chem. Soc. 143 (17), 6482-6490, DOI: https://doi.org/10.1021/jacs.1c00384 (2021).

  • Yang, L., Haber, J., Amstrong, Z., Yang, S., Kan, K., Zhou, L., Richter, M., Roat, C., Wagner, N., Coram, M., Berndl, M., Riley, P., Gregoire, J. Discovery of complex oxides via automated experiments and data science., PNAS, 118(37, e2106042118, DOI: https://doi.org/10.1073/pnas.2106042118 (2021).

  • Ye, Y., Su, H., Lee, K., Larson, D., Valero-Vidal, C., Blum, M. A., Yano, J., Crumlin, E. Carbon Dioxide adsorption and activation on Gallium Phosphide surface monitored by ambient pressure X-ray photoelectron spectroscopy. J. Phys. D: Applied Physics, http://iopscience.iop.org/article/10.1088/1361-6463/abec0a (2021).

  • Yu, W., Richter, M., Simonaoff, E., Brunschwig, B., Lewis, N. Investigations of the Stability of GaAs for Photoelectrochemical H2 Evolution in Acidic or Alkaline Aqueous Electrolytes., J. Mater. Chem. A, DOI: DOI https://doi.org/10.1039/D1TA04145B (2021).

  • Zhou, J., Park, J., Lu, I., Maliyov, I., Tong, X., Bernardi, M. Perturbo: A software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics. Computer Physics Communications, 264, 107970, DOI: https://doi.org/10.1016/j.cpc.2021.107970 (2021).

  • Zhou, Y., Gao, G., Chu, W., Wang, L. Transition-metal single atoms embedded into defective BC3 as efficient electrocatalysts for oxygen evolution and reduction reactions. Nanoscale, 13(2), 1331-1339, DOI: https://doi.org/10.1039/D0NR07580A (2021).

  • Zhou, Y. Li, J., Gao, X., Chu, W., Gao, G., Wang, L.-W. Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. J. Mater. Chem. A, 9, 9979-9999, DOI: https://doi.org/10.1039/D1TA00154J (2021).

+ 2020

  • Agbo, P. Transparent Dual-Conductivity Membrane Composites as Current Distributors for Diffuse Electrocatalysts. ACS Appl. Energy Mater. DOI: 10.1021/acsaem.0c02339 (2020).

  • Agbo, P. JV Decoupling: Independent Control over Current and Potential in Electrocatalysis. J. Phys. Chem. C, 124 (52), 28387–28394, https://doi.org/10.1021/acs.jpcc.0c08142 (2020).

  • Babbe, F., Sutter-Fella, C. Optical Absorption‐Based In Situ Characterization of Halide Perovskites. Advanced Energy Materials, DOI: 10.1002/aenm.201903587 (2020).

  • Babbe, F., Masquelier, E., Zheng, Z., Sutter-Fella, C. Multi stage and illumination dependent segregation in MAPb(I,Br)3. DOI: https://doi.org/10.1117/12.2568995 (2020).

  • Babbe, F., Masquelier, E., Zheng, Z., Sutter-Fella, C., Flash Formation of I-Rich Clusters during Multistage Halide Segregation Studied in MAPbI1.5Br1.5. J. Phys. Chem. C, 124, 45, 24608–24615, DOI: 10.1021/acs.jpcc.0c07063 (2020).

  • Baricuatro, J., Kim, Y.-G., Korzeniewski, C., Soriaga, M. Tracking the prelude of the electroreduction of carbon monoxide via its interaction with Cu(100): Studies by operando scanning tunneling microscopy and infrared spectroscopy. Catalysis Today, DOI: https://doi.org/10.1016/j.cattod.2020.01.028 (2020).

  • Borgwardt, M., Mahl, J., Roth, F., Wenthaus, L., Brausche, F., Blum, M., Schwarzburg, K., Liu, G., Toma, F., Gerssner, O. Photoinduced Charge Carrier Dynamics and Electron Injection Efficiencies in Au Nanoparticle-Sensitized TiO2 Determined with Picosecond Time-Resolved X-ray Photoelectron Spectroscopy. J. Phys. Chem. Lett., 11(14), 5476, DOI: https://doi.org/10.1021/acs.jpclett.0c00825 (2020).

  • Buabthong, P., Ifkovits, Z., Kempler, P., Chen, Y., Nunez, P., Brunschwig, B., Papadantonakis, K., Lewis, N. Failure modes of protection layers produced by atomic layer deposition of amorphous TiO2 on GaAs anodes. Energy Environ. Sci., https://doi.org/10.1039/D0EE02032J (2020).

  • Bui, J., Digdaya, I., Xiang, C., Bell, A., Weber, A. Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes. ACS Appl. Mater. Interfaces, 12, 47, 52509–52526, DOI: 10.1021/acsami.0c12686 (2020).

  • Chapovetsky, A., Liu, J., Welborn, M., Luna, J., Do, T., Haiges, R., Miller, T., Marinescu, S. Electronically Modified Cobalt Aminopyridine Complexes Reveal an Orthogonal Axis for Catalytic Optimization for CO2 Reduction, Inorg. Chem., 59(18), 13709-13718, DOI: 10.1021/acs.inorgchem.0c02086 (2020).

  • Chen, Y. Bai, Y., Zhao, W., Ament, S., Gregoire, J., Gomes, C. Deep Reasoning Networks for Unsupervised Pattern De-mixing with Constraint Reasoning. Proceedings of the 37th International Conference on Machine Learning, PMLR 119:1500-1509, http://proceedings.mlr.press/v119/chen20a.html (2020).

  • Chen, Y., Cheng, T., Goddard, W. Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 Times Better than Pt. J. Am. Chem. Soc. DOI: https://doi.org/10.1021/jacs.9b13218 (2020).

  • Chen, Y., Xiang, C., Lewis, N. Modeling the Performance of A Flow-Through Gas Diffusion Electrode for Electrochemical Reduction of CO or CO2. J. Electrochemical Society, DOI: http://iopscience.iop.org/10.1149/1945-7111/ab987a (2020).

  • Cheng, W.-H., Richter, M., Sullivan, I., Larson, D., Xiang, C., Brunschwig, B., Atwater, H. CO2 Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination. ACS Energy Lett., DOI: 10.1021/acsenergylett.9b02576 (2020).

  • Chiu, Y.-H., Lindley, S., Tsao, C.-W., Kuo, M.-Y., Cooper, J., Hsu, Y.-J., Zhang, J. Z., Hollow Au Nanosphere-Cu2O Core-Shell Nanostructures with Controllable Core Surface Morphology. J. Phys. Chem. C DOI: https://doi.org/10.1021/acs.jpcc.0c02214 (2020).

  • Choi, C., Kwon, S., Cheng, T., Xu, M., Tieu, P., Lee, C., Cai, J., Lee, H., Pan, X., Duan, X., Goddard, W., and Huang, Y. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4, Nature Catalysis, https://doi.org/10.1038/s41929-020-00504-x (2020).

  • Corson, E., Creel, E., Kostecki, R., McCloskey, B., Urban, J. Important Considerations in Plasmon-Enhanced Electrochemical Conversion at Voltage-Biased Electrodes. Science, 23(3), 100911 DOI: 10.1016/j.isci.2020.100911 (2020).

  • Corson, E., Kas, R., Kostecki, R., Urban, J., Smith, W., McCloskey, B., Kortlever, R. In Situ ATR–SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode. J. Am. Chem. Soc. DOI: https://doi.org/10.1021/jacs.0c01953 (2020).

  • Corson, E., Subramani, A., Cooper, J., Kostecki, R., Urban, J., McCloskey, B. Reduction of Carbon Dioxide at a Plasmonically Active Copper-Silver Cathode. Chem. Commun., DOI: https://doi.org/10.1039/D0CC03215H (2020).

  • Digdaya, I., Sullivan, I., Lin, M., Han, L., Cheng, W.-H., Atwater, H., Xiang, C. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater, Nature Communications, 11, 4412, DOI: https://doi.org/10.1038/s41467-020-18232-y (2020).

  • De Riccardis, A., Lee, M., Kazantsev, R., Garza, A., Zeng, G., Larson, D., Clark, E., Labaccaro, P., Burroughs, P., Bloise, E., Ager, J., Bell, A., Head-Gordon, M., Mele, G., Toma, F. Heterogenized Pyridine-Substituted Cobalt (II) Phthalocyanine Yeilds Reduction of CO2 by Tuning the Electron Affinity of the Co Center. ACS Appl. Mater. Interfaces, 12 (5), 5251, DOI: https://doi.org/10.1021/acsami.9b18924 (2020).

  • DuChene, J., Tagliabue, G., Welch, A., Li, X., Cheng, W.-H., Atwater, H. Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO2 Reduction in Aqueous Electrolytes. Nano Lett., DOI: 10.1021/acs.nanolett.9b04895 (2020).

  • Ebaid, M., Jiang, K., Zhang, Z., Drisdell, W., Bell, A., Cooper, J. Production of C2/C3 Oxygenates from Planar Copper Nitride-Derived Mesoporous Copper via Electrochemical Reduction of CO2. Chem. Mater., DOI: 10.1021/acs.chemmater.0c00761 (2020).

  • Ebaid, M., Larson, D., Bustillo, K., Turner, J., Cooper, J. Saw-Tooth Heat-Cycling Nitridation of Metallic Cu Yields First Photoactive p-Cu3N for PEC Applications. ACS Appl. Energy Mater. 3, 11, 10714–10721, DOI: 10.1021/acsaem.0c01754 (2020).

  • Eichhorn, J., Reyes-Lillo, S., Roychoudhury, S., Sallis, S., Weis, J., Larson, D., Cooper, J., Sharp, I., Prendergast, D., Toma, F. Revealing Nanoscale Chemical Heterogeneities in Polycrystalline Mo‐BiVO4 Thin Films. Small, 2001600., DOI: https://doi.org/10.1002/smll.202001600 (2020).

  • Ferrah, D., Tieu, P. Controllable Growth of Copper on TiO2 Nanoparticles by Photodeposition Based on Coupled Effects of Solution Viscosity and Photoreduction Rate for Catalysis-Related Applications. ACS Appl.Nano Mater., 3(6), 5855, DOI: https://doi.org/10.1021/acsanm.0c01015 (2020).

  • Flores Espinosa, M., Cheng, T., Xu, M., Abatemarco, L., Choi, C., Pan, X., Goddard, W., Zhao, Z., Huang, Y. Compressed Intermetallic PdCu for Enhanced Electrocatalysis. ACS Energy Lett., 5, 3672–3680, DOI: 10.1021/acsenergylett.0c01959 (2020).

  • Fu, J.-H., Lu, A.-Y., Madden, N., Wu, C., Chen, Y.-C., Chiu, M.-H., Hattar, K., Krogstad, J., Chou, S., Li, L.-J., Kong, J., Tung, V. Additive manufacturing assisted van der Waals integration of 3D/3D hierarchically functional nanostructures. Comm. Materials, 1, DOI: https://doi.org/10.1038/s43246-020-0041-2 (2020).

  • Fu, J.-H., Moreno-Hernandez, I., Buabthong, P., Papadantonakis, K., Brunschwig, B., Lewis, N. Enhanced Stability of Silicon for Photoelectrochemical Water Oxidation Through Self-Healing Enabled by an Alkaline Protective Electrolyte. Energy.Environ. Sci., https://doi.org/10.1039/D0EE02250K (2020).

  • Gai, Y., Tang, G., Gao, G., Wang, L.-W. Thermodynamic Full Landscape Searching Scheme for Identifying the Mechanism of Electrochemical Reaction: A Case Study of Oxygen Evolution on Fe- and Co-Doped Graphene–Nitrogen Sites. J. Phys. Chem. A, DOI: https://doi.org/10.1021/acs.jpca.0c02449 (2020).

  • Garg, S., Li, M., Weber, A., Ge, L., Li, L., Rudolph, V., Wang, G., Rufford, T. Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. J. Mater. Chem. A, 8, 1511-1544, DOI: https://doi.org/10.1039/C9TA13298H (2020).

  • Gauthier, J., Chen., L., Bajdich, M., Chan, K. Implications of the fractional charge of hydroxide at the electrochemical interface. Phys. Chem. Chem. Phys., DOI: 10.1039/C9CP05952K (2020).

  • Ge, L., Yuan, H., Min, Y., Li, L., Chen, S., Xu, L., Goddard, W. Predicted Optimal Bifunctional Electrocatalysts for Both HER and OER Using Chalcogenide Heterostructures Based on Machine Learning Analysis of In Silico Quantum Mechanics Based High Throughput Screening. J. Phys. Chem. Lett., DOI: 10.1021/acs.jpclett.9b03875 (2020).

  • Goddard, W. New Quantum Mechanics Based Methods for Multiscale Simulations with Applications to Reaction Mechanisms for Electrocatalysis. Top Catal. https://doi.org/10.1007/s11244-020-01369-x (2020).

  • Hahn, C., and Jaramillo, T. Using Microenvironments to Control Reactivity in CO2 Electrocatalysis. Joule, 4(2), 292-294, DOI: 10.1016/j.joule.2020.01.017 (2020).

  • Heenen, H., Gauthier, J., Kristoffersen, H., T. Ludwig, T., Chan, K. Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches. J. Chem. Phys., 152, 144703, DOI: https://doi.org/10.1063/1.5144912 (2020).

  • Hossain, M. D., Huang, Y., Yu, T., Goddard, W., Luo, Z. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nature Commun. 11, 2256, DOI: https://doi.org/10.1038/s41467-020-16119-6 (2020).

  • Jeong, H., Kwon, Y., Won, J. H., Lum, Y., Cheng, M.-J., Kim, K., Head-Gordon, M., Kang, J. Atomic‐Scale Spacing between Copper Facets for the Electrochemical Reduction of Carbon Dioxide. Adv. Energy Mater. , DOI: https://doi.org/10.1002/aenm.201903423 (2020).

  • Ji, W., Allen, T., Yang, X., Zeng, G., De Wolf, S., Javey, A. Polymeric Electron-Selective Contact for Crystalline Silicon Solar Cells with an Efficiency Exceeding 19%. ACS Energy Lett., 5, 897-902, DOI: 10.1021/acsenergylett.0c00110 (2020).

  • Jiang, K., Huang, Y., Zeng, G., Toma, F., Goddard, W., Bell, A. Effects of Surface Roughness on the Electrochemical Reduction of CO2 over Cu. ACS Energy Lett., 5, 1206-1214, DOI: 10.1021/acsenergylett.0c00482 (2020).

  • Kempler, P., Coridan, R., Lewis, N. Effects of Bubbles on the Electrochemical Behavior of Hydrogen-Evolving Si Microwire Arrays Oriented Against Gravity. Energy Environ. Sci. DOI: https://doi.org/10.1039/D0EE00356E (2020).

  • Kempler, P., Richter, M., Cheng, W.-H., Brunschwig, B., Lewis, N. Si Microwire-Array Photocathodes Decorated with Cu Allow CO2 Reduction with Minimal Parasitic Absorption of Sunlight. ACS Energy Lett., 5, 2528, DOI: https://doi.org/10.1021/acsenergylett.0c01334 (2020).

  • Kempler, P., Ifkovits, Z., Yu, W., Carim, A., Lewis, N. Optical and electrochemical effects of H2 and O2 bubbles at upward-facing Si photoelectrodes. Energy Environ. Sci., DOI: 10.1039/D0EE02796K (2020).

  • Kim, C., Weng, L.-C., Bell, A. Impact of Pulsed Electrochemical Reduction of CO2 on the Formation of C2+ Products over Cu. ACS Catal. 10, 12403-12413, https://doi.org/10.1021/acscatal.0c02915 (2020).

  • Kim, D., Yu, S., Zheng, F., Roh, I., Li, Y., Louisia, S., Qi, Z., Somorjai, G., Frei, H., Wang, L.-W., Yang, P. Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nature Energy, 5, 1032-1042, https://doi.org/10.1038/s41560-020-00730-4 (2020).

  • Kistler, T., Agbo, P. Current loss analysis in photoelectrochemical devices. APL Materials, STF2020, 031107, DOI: 10.1063/1.5142561@apm.2020.STF2020.issue-1 (2020).

  • Kistler, T., Um, M., Agbo, P. Stable Photoelectrochemical Hydrogen Evolution for 1000 h at 14% Efficiency in a Monolithic Vapor-fed Device. J. Electro. Soc. 167 (6), DOI: https://doi.org/10.1149/1945-7111/ab7d93 (2020).

  • Koshy, D., Chen, S., Lee, D., Stevens, M., Abdellah, A., Dull, S., Chen, G., Norlund, D., Gallo, A., Hahn, C., Higgins, D., Bao, Z., Jaramillo, T. Understanding the Origin of Highly Selective CO2 Electroreduction to CO on Ni, N‐doped Carbon Catalysts. Angew. Chem., DOI:10.1002/ange.201912857 (2020).

  • Koshy, D. M., Landers, A. T., Cullen, D. A., Ievlev, A. V., Meyer, H. M., Hahn, C., Bao, Z., Jaramillo, T. F., Direct Characterization of Atomically Dispersed Catalysts: Nitrogen‐Coordinated Ni Sites in Carbon‐Based Materials for CO2 Electroreduction. Adv. Energy Mater. , 2001836. https://doi.org/10.1002/aenm.202001836 (2020).

  • Lee, M., De Riccardis, A., Kazantsev, R., Cooper, J., Buckley, A., Burroughs, P., Larson, D., Mele, G., Toma, F. Aluminum Metal Organic Framework Triggers Carbon Dioxide Reduction Activity. ACS Appl. Energy Mater., DOI: https://doi.org/10.1021/acsaem.9b02210 (2020).

  • Lee, S. H., Sullivan, I., Larson, D., Liu, G., Toma, F., Xiang, C., Drisdell, W. Correlating Oxidation State and Surface Area to Activity from Operando Studies of Copper CO Electroreduction Catalysts in a Gas-Fed Device. ACS Catal., 10(14), 8000, DOI: https://doi.org/10.1021/acscatal.0c01670 (2020).

  • Lin, Y.-R., Cheng, W.-H., Richter, M., DuChene, J., Peterson, E., Went, C. Balushi, Z., Jariwala, D., Neaton, J., Chen, L.-C., Atwater, H. Band Edge Tailoring in Few-layer Two-dimensional Molybdenum Sulfides/Selenides Alloys. J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.0c04719 (2020).

  • Loipersberger, M., Zee, D., Panetier, J., Chang, C., Long, J., Head-Gordon, M. Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer. Inorg. Chem. 59(12), 8146–8160, DOI: https://doi.org/10.1021/acs.inorgchem.0c00454 (2020).

  • Ludwig, T., Gauthier, J., Dickens, C., Brown, K., Ringe, S., Chan, K., Norskov, J. Atomistic Insight into Cation Effects on Binding Energies in Cu-Catalyzed Carbon Dioxide Reduction. J. Phys. Chem. C, 124, 45, 24765–24775, DOI: 10.1021/acs.jpcc.0c07004 (2020).

  • Morena-Hernandez, I., Yalamanchili, S., Fu, H., Atwater, H., Brunschwig, B., Lewis, N. Conformal SnOx heterojunction coatings for stabilized photoelectrochemical water oxidation using arrays of silicon microcones. J. Mater. Chem. A 8, 9292, DOI: https://doi.org/10.1039/D0TA01144D (2020).

  • Naserifar, S., Chen, Y., Kwon, S., Xiao, H., Goddard, W. Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next-Generation Electrocatalysts. Matter, https://doi.org/10.1016/j.matt.2020.11.010 (2020).

  • Newhouse, P., Gueverra, D., Zhou, L., Wang, Y., Umehara, M., Boyd, D., Gregoire, J., Haber, J. Enhanced Bulk Transport in Copper Vanadate Photoanodes Identified by Combinatorial Alloying. Matter, https://doi.org/10.1016/j.matt.2020.08.032 (2020).

  • Newhouse, P., Zhou, L., Umehara, M., Boyd, D., Soedarmadji, E., Haber, J., Gregoire, J. Bi Alloying into Rare Earth Double Perovskites Enhances Synthesizability and Visible Light Absorption. ACS Comb. Sci. DOI: 10.1021/acscombsci.0c00177 (2020).

  • Oh, S., Bisbey, R., Gul, S., Yano, J., Fisher, G., Surendranath, Y. N-Heterocyclic Linkages are Produced from Condensation of Amidines onto Graphitic Carbon, Chem. Mater., https://doi.org/10.1021/acs.chemmater.0c02664 (2020).

  • Ozden, A., Li, F., de Arquer, P., Rosas-Hernandez, A., Thevenon, A., Wang, Y., Hung, S.-F., Wang, X., Chen, B., Li, J., Wicks, J., Luo, M., Wang, Z., Agapie, T., Peters, J., Sargent, E., Sinton, D. High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Lett., 5, 2811-2818, DOI: https://doi.org/10.1021/acsenergylett.0c01266 (2020).

  • Resasco, J. , Bell, A. Electrocatalytic CO2 Reduction to Fuels: Progress and Opportunities. Trends in Chemistry, DOI: https://doi.org/10.1016/j.trechm.2020.06.007 (2020).

  • Ribson, R., Choi, G., Hadt, R., Agapie, T. Controlling Singlet Fission with Coordination Chemistry-Induced Assembly of Dipyridyl Pyrrole Bipentacenes. ACS Cent. Sci., 6, 11, 2088–2096, DOI: 10.1021/acscentsci.0c01044 (2020).

  • Richter, M., Lublow, M., Papadantonakis, K., Lewis, N., Lewerenz, H.-J. Genesis and Propagation of Fractal Structures During Photoelectrochemical Etching of n-Silicon. ACS Appl. Mater. Interfaces, DOI:10.1021/acsami.9b22900 (2020).

  • Ringe, S., Morales-Guio, C.G., Chen, L.D. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nat. Commun. 11, 33, DOI:10.1038/s41467-019-13777-z (2020).

  • Rohr, B., Stain, H., Guevarra, D., Wang, Y., Haber, J., Aykol, M., Suram, S., Gregoire, J. Benchmarking the acceleration of materials discovery by sequential learning. Chem. Sci., DOI: 10.1039/C9SC05999G (2020).

  • Sato, S., McNicholas, B., Grubbs, R. Aqueous electrocatalytic CO2 reduction using metal complexes dispersed in polymer ion gels. Chem. Commun. 56, 4440, DOI: https://doi.org/10.1039/D0CC00791A (2020).

  • Shen, X., Yao, M., Sun, K., Zhao, T., He, Y., Chi, C.-Y., Zhou, C., Dapkus, P., Lewis, N., Hu, S. Defect-Tolerant TiO2-Coated and Discretized Photoanodes for >600 h of Stable Photoelectrochemical Water Oxidation. ACS Energy Lett., 6, 193-200, https://doi.org/10.1021/acsenergylett.0c02521 (2020).

  • Song, T.-B., Yuan, Z., Babbe, F., Nenon, D., Aydin, E., De Wolf, S., Sutter-Fella, C. Dynamics of Antisolvent Processed Hybrid Metal Halide Perovskites Studied by In Situ Photoluminescence and Its Influence on Optoelectronic Properties. ACS Appl. Energy Mater. DOI: 10.1021/acsaem.9b02052 (2020).

  • Soniat, M., Tesfaye, M., Mafi, A., Brooks, D., Hamphrey, N., Weng, L.-C., Merionov, B., Goddard, W., Weber, A., Houle, F., Permeation of CO2 and N2 through glassy poly(dimethyl phenylene) oxide under steady‐ and presteady‐state conditions. J. Polym. Sci., 1, 22, DOI: 10.1002/pol.20200053 (2020).

  • Suram, S., Rohr, B., Stein, H., Guevarra, D., Wang, Y., Haber, J., Aykol, M., Gregoire, J. Benchmarking the acceleration of materials discovery by sequential learning. Chem. Sci., DOI: https://doi.org/10.1039/C9SC05999G (2020).

  • Tagliabue, G., DuChene, J. S., Abdellah, J. S., Habib, A., Gosztola, D., Hattori, Y., Cheng, W.-H., Zheng, K., Canton, S., Sundararaman, R., Sa, J., Atwater, H. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nature Materials, DOI: https://doi.org/10.1038/s41563-020-0737-1 (2020).

  • Tagliabue, G., DuChene, J., Habib, A., Sundarararman, R., Atwater, H. Hot-Hole versus Hot-Electron Transport at Cu/GaN Heterojunction Interfaces. ACS Nano, DOI: https://doi.org/10.1021/acsnano.0c00713 (2020).

  • Tang, M. Peng, H., Lamoureux, P., Bajdich, M., Abild-Pedersen, F. From electricity to fuels: Descriptors for C1 selectivity in electrochemical CO2 reduction. Applied Catalysis B: Environmental, 279, 119384, DOI: https://doi.org/10.1016/j.apcatb.2020.119384 (2020).

  • Tang, M., Liu, X., Ji, Y., Norskov, J., Chan, K. Modeling Hydrogen Evolution Reaction Kinetics through Explicit Water–Metal Interfaces. J. Phys. Chem. C, 124 (51), 28083–28092, https://doi.org/10.1021/acs.jpcc.0c08310 (2020)

  • Torrisi, S., Singh, A., Montoya, J., Biswas, T., Persson, K. Two-dimensional forms of robust CO2 reduction photocatalysts. npj 2D Mater. Appl., 4, 24, DOI: https://doi.org/10.1038/s41699-020-0154-y (2020).

  • Umehara, M., Zhou, L., Haber, J., Guevarra, D., Kan, K. Newhouse, P., Gregoire, J. Combinatorial synthesis of oxysulfides in the lanthanum-bismuth-copper system. ACS Comb. Sci. DOI: https://doi.org/10.1021/acscombsci.0c00015 (2020).

  • Wang, H., Tzeng, Y.-K., Ji, Y., Li, Y., Li, J., Zheng, X., Yang, A., Liu, Y., Gong, Y., Cai, L., Li, Y., Zhang, X., Chen, W., Liu, B., Lu, H., Melosh, N., Shen, Z.-X., Chan, K., Tan, T., Chu, S., Cui, Y. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol., DOI: 10.1038/s41565-019-0603-y (2020).

  • Wang, L., Higgins, D., Ji, Y., Morales-Guio, C., Chan, K., Hahn, C., Jaramillo, T. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. proceedings of the National Academy of Sceinces, DOI: https://doi.org/10.1073/pnas.1821683117 (2020).

  • Wang, Z., Yuan, Q., Shan, J., Jiang, Z., Xu, P., Hu, Y., Zhou, J., Wu, L., Niu, Z., Sun, J., Cheng, T., Goddard, W. Highly Selective Electrocatalytic Reduction of CO2 into Methane on Cu–Bi Nanoalloys. J. Phys. Chem. Lett., DOI: https://doi.org/10.1021/acs.jpclett.0c01261 (2020).

  • Weng, L.-C., Bell, A., Weber, A. A systematic analysis of Cu-based membrane-electrode assemblies for CO2 reduction through multiphysics simulation, Energy & Environmental Science, https://doi.org/10.1039/D0EE01604G (2020).

  • Xi, C., Zheng, F., Gao, G., Ye, M., Dong, C., Du, X.-W., Wang, L.-W. Distribution of alkali cations near the Cu (111) surface in aqueous solution. J. Mater. Chem. A, DOI: 10.1039/D0TA08965F (2020).

  • Yadegari, H., Ozden, A., Alkayyali, T., Soni, V., et al., Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C2 and C3 Product Streams., ACS Energy Lett., 6, 3538-3544, DOI: https://doi.org/10.1021/acsenergylett.1c01639 (2021).

  • Yang, F., Zhou, X., Plymale, N., Sun, K., Lewis, N. Evaluation of sputtered nickel oxide, cobalt oxide and nickel–cobalt oxide on n-type silicon photoanodes for solar-driven O2(g) evolution from water. J. Mater. Chem. A, 8, 13955, DOI: https://doi.org/10.1039/D0TA03725G (2020).

  • Yao, Y., Huang, Z., Li, T., Wang, H., Liu, Y., Stein, H., Mao, Y., Gao, J., Jiao, M., Dong, Q., Dai, J., Xie, P., Xie, H., Lacey, S., Takeuchi, I., Gregoire, J., Jiang, R., Wang, C., Taylor, A., Shahbazian-Yassar, R., Hu, L. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proceedings of the National Academy of Sceinces, DOI: 10.1073/pnas.1903721117 (2020).

  • Ye, Y., Qian, J., Yang, H., Su, H., Lee, K.-J., Etxebarria, A., Cheng, T., Xiao, H., Yano, J., Goddrad, W., Crumlin, E. Synergy between Silver-Copper Surface Alloy Composition and Carbon Dioxide Adsorption and Activation. ACS Appl. Mater. Interfaces, DOI: https://doi.org/10.1021/acsami.0c02057 (2020).

  • Yu, W., Buabthong, P., Read, C., Dalleska, N., Lewis, N., Lewerenz, H.-J., Gray, H., Brinket, K. Cathodic NH4+ leaching of nitrogen impurities in CoMo thin-film electrodes in aqueous acidic solutions. Sustainable Energy Fuels, DOI: https://doi.org/10.1039/D0SE00674B (2020).

  • Yu, W., Lewis, N., Gray, H., Dalleska, N. Isotopically Selective Quantification by UPLC-MS of Aqueous Ammonia at Submicromolar Concentrations Using Dansyl Chloride Derivatization. ACS Energy Lett. 5(5), 1532–1536, DOI: https://doi.org/10.1021/acsenergylett.0c00496 (2020).

  • Yu, W., Fu, H., Mueller, T., Brunschwig, B., Lewis, N. Atomic force microscopy: Emerging illuminated and operando techniques for solar fuel research. J. Chem. Phys. 153, 020902, DOI: https://doi.org/10.1063/5.0009858 (2020).

  • Zee, D., Nippe, M., King, A., Chang, C., Long, J. Tuning Second Coordination Sphere Interactions in Polypyridyl–Iron Complexes to Achieve Selective Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide. Inorg. Chem., 59, 7, 5206, DOI:10.1021/acs.inorgchem.0c00455 (2020).

  • Zhang, Z., Lindley, S., Guevarra, D., Kan, K., Shinde, A., Gregoire, J., Han, W., Xie, E., Haber, J., Cooper, J. Fermi Level Engineering of Passivation and Electron Transport Materials for p‐Type CuBi2O4 Employing a High‐Throughput Methodology. Adv. Funct. Mater., 2000948, DOI: https://doi.org/10.1002/adfm.202000948 (2020).

  • Zheng, F., Wang, L.-W. Exploring non-adiabaticity to CO reduction reaction through ab initio molecular dynamics simulation. APL Materials 8, 041115, DOI: https://doi.org/10.1063/5.0002318 (2020).

  • Zhou, L., Shinde, A., Guevarra, D., Richter, M., Stein, H., Wang, Y., Newhouse, P., Persson, K., Gregoire, J. Combinatorial screening yields discovery of 29 metal oxide photoanodes for solar fuel generation. J. Mater. Chem. A, DOI: https://doi.org/10.1039/C9TA13829C (2020).

  • Zhou, L., Shinde, A., Guevarra, D., Haber, J., Persson, K., Neaton, J., Gregoire, J. Successes and opportunities for discovery of metal oxide photoanodes for solar fuels generators. ACS Energy Lett. DOI: 10.1021/acsenergylett.0c00067 (2020).

  • Zhou, L., Shinde, A., Newhouse, P., Gueverra, Wang, Y., Lai, Y., Kan, K., Suram, S., Haber, J., Gregiore, J. Quaternary Oxide Photoanode Discovery Improves the Spectral Response and Photovoltage of Copper Vanadates. Matter, https://doi.org/10.1016/j.matt.2020.08.031 (2020).

+ 2019

  • Abbott, L., Buss, H., Thelen, J., McCloskey, B., Lawson, J. Polyanion Electrolytes with Well-Ordered Ionic Layers in Simulations and Experiment. Macromolecules, DOI: https://doi.org/10.1021/acs.macromol.9b00416 (2019).

  • Agbo, P., Danilovic, N., An Algorithm for the Extraction of Tafel Slopes, J. Phys. Chem., DOI: https://doi.org/10.1021/acs.jpcc.9b06820 (2019).

  • Ali-Loytty, H., Hannula, M., Valden, M., Eilert, A., Ogasawara, H., Nilsson, A. Chemical Dissolution of Pt(111) during Potential Cycling under Negative pH Conditions Studied by Operando X-ray Photoelectron Spectroscopy. J. Phys. Chem. C, 123(41), 25128-25134, DOI: https://doi.org/10.1021/acs.jpcc.9b05201 (2019).

  • Ament, S., Stain, H., Guevarra, D., Zhou, L., Haber, J., Boyd, D., Umehara, M., Gregoire, J., Gomes, C., Multi-component background learning automates signal detection for spectroscopic data. npj Computational Materials, 5, 77, DOI: https://doi.org/10.1038/s41524-019-0213-0 (2019).

  • Baricuatro, J., Kim, Y., Tsang, C., Javier, A., Cummins, K., Hemminger, J. Selective conversion of CO into ethanol on Cu(511) surface reconstructed from Cu(pc): Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy. J. Electroanalytical Chemistry, DOI: https://doi.org/10.1016/j.jelechem.2019.113704 (2019).

  • Bao, W., Liu, X., Xue, F., Zheng, F., Tao, R., Wang, S., Xia, Y., Zhao, M., Kim, J., Yang, S., Li, Q., Wang, Y., Wang, Y., Wang, L.-W., MacDonald, A., Zhang, X. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proceedings of the National Academy of Sciences, DOI: https://doi.org/10.1073/pnas.1909948116 (2019).

  • Borgwardt, M., Omelchenko, S., Favaro, M., Plate, P., Hohn, C., Abou-Ras, D., Schwarzburg, K., van de Krol, R., Atwater, H., Lewis, N., Eichberger, R., Friedrich, D. Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes. Nature Comm., 10, 2106, DOI: https://doi.org/10.1038/s41467-019-10143-x (2019).

  • Buckley, A., Lee, M., Cheng, T., Kazantsev, R., Larson, D., Goddard, W., Toste, D., Toma, F. Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b13655 (2019).

  • Bullock, J., Wan, Y., Hettick, M., Zhaoran, X., Phang, S. P., Yan, D., Wang, H., Ji, W., Samundsett, C., Hameiri, Z., McDonald, D., Cuevas, A., Javey, A. Dopant‐Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. Advanced Energy materials, DOI: https://doi.org/10.1002/aenm.201803367 (2019).

  • Cai, I., Ziegler, M., Bunting, P., Nicolay, A., Levine, D., Kalendra, V., Smith, P., Lakshmi, K., Tilley, T. D. Monomeric, Divalent Vanadium Bis(arylamido) Complexes: Linkage Isomerism and Reactivity. Organometallics, DOI: 10.1021/acs.organomet.9b00134 (2019).

  • Carter, B. Keller, L., Wessling, M., Miller, D. Preparation and characterization of crosslinked poly(vinylimidazolium) anion exchange membranes for artificial photosynthesis. J. Mater. Chem. A., DOI: 10.1039/C9TA00498J (2019).

  • Chen, C., Pedrini, J., Gaulding, A., Kastl, C., Calafiore, G., Dhuey, S., Kuykendall, T., Cabrini, S., Toma, F., Aloni, S., Schwartzberg, A. Very High Refractive Index Transition Metal Dichalcogenide Photonic Conformal Coatings by Conversion of ALD Metal Oxides. Scientific Reports, DOI: https://doi.org/10.1038/s41598-019-39115-3 (2019).

  • Chen, Y., Huang, Y., Cheng, T., Goddard, W., Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations. J. Am. Chem. Soc., https://doi.org/10.1021/jacs.9b04956 (2019).

  • Cheng, T., Fortunelli, A., Goddard, W. Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1821709116 (2019).

  • Cheng, T., Jaramillo-Botero, A., An, Q., Ilyin, D., Naserifar, S., Goddard, W. First principles-based multiscale atomistic methods for input into first principles nonequilibrium transport across interfaces. Proceeding of the National Academy of Sciences, DOI: https://doi.org/10.1073/pnas.1800035115 (2019).

  • Clark, E., Ringe, S., Tang, M., Walton, A., Hahn, Jaramillo, T., Chan, K., Bell, A. Influence of Atomic Surface Structure on the Activity of Ag for the Electrochemical Reduction of CO2 to CO. ACS Catalysis, 9, 4006-4014, DOI: 10.1021/acscatal.9b00260 (2019).

  • Clark, E., Wong, J., Garza, A., Lin, Z., Head-Gordon, M., Bell, A. Explaining the Incorporation of Oxygen Derived from Solvent Water into the Oxygenated Products of CO Reduction over Cu. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b13201 (2019).

  • Cole, W., Wei, H., Nguyen, S., Harris, C., Miller, D., Saykally, R. Dynamics of Micropollutant Adsorption to Polystyrene Surfaces Probed by Angle-Resolved Second Harmonic Scattering. J. Phys. Chem. C, 123(23), 14362-14369, DOI: https://doi.org/10.1021/acs.jpcc.9b01146 (2019).

  • Creel, E., Corson, E., Eichhorn, J., Kostecki, R., Urban, J., McCloskey, B. Directing Selectivity of Electrochemical Carbon Dioxide Reduction Using Plasmonics. ACS Energy Letters, DOI: 10.1021/acsenergylett.9b00515 (2019).

  • De Luna, P., Hahn, C., Higgins, D., Jaffer, S., Jaramillo, T., Sargent, E. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science, 364 (6438), DOI: 10.1126/science.aav3506 (2019).

  • Diederichsen, K. and McCloskey, B. Electrolyte additives to enable nonaqueous polyelectrolyte solutions for lithium ion batteries. Molecular Systems Design & Engineering, DOI: 10.1039/C9ME00067D (2019).

  • Diederichsen, K., Terrell, R., McCloskey, B. Counterion Transport and Transference Number in Aqueous and Nonaqueous Short Chain Polyelectrolyte Solutions. J. Phys. Chem. B, DOI: https://doi.org/10.1021/acs.jpcb.9b09517 (2019).

  • Farmand, M., Landers, A., Lin, J., Feaster, J., Beeman, J., Ye, Y., Clark, E., Higgins, D., Yano, J., Davis, R., Mehta, A., Jaramillo, T., Hahn, C., Drisdell, W. Electrochemical flow cell enabling operando probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction. Physical Chemistry Chemical Physics, DOI: 10.1039/C8CP07423B (2019).

  • Ferrah, D., Haines, A., Galhehage, R., Bruce, J., Babore, A., Hunt, A., Waluyo, I., Hemminger, J. Wet Chemical Growth and Thermocatalytic Activity of Cu-Based Nanoparticles Supported on TiO2 Nanoparticles/HOPG: In Situ Ambient Pressure XPS Study of the CO2 Hydrogenation Reaction. ACS Catalysis, 9, 6783-6802, DOI: https://doi.org/10.1021/acscatal.9b01419 (2019).

  • Garg, S., Li, M., Weber, A., Ge, L., Li, L., Rudolph, V., Wang, G., Rufford, T. Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. J. Mater. Chem. A., DOI: 10.1039/C9TA13298H, (2019).

  • Gauthier, J., Fields, M., Bajdich, M., Chen, L., Sandberg, R., Chan, K., Norskov, J. Facile Electron Transfer to CO2 during Adsorption at the Metal|Solution Interface. J. Phys. Chem. C. DOI: https://doi.org/10.1021/acs.jpcc.9b10205 (2019).

  • Gregoire, J. Unexpected Transitions Yield Interesting Science and High-Performance Materials. Matter 1(4), 790-791, DOI: https://doi.org/10.1016/j.matt.2019.09.006 (2019).

  • Gregoire, J. , Stein, H. Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem. Sci., DOI: 10.1039/C9SC03766G (2019).

  • Gomes, C., Selman, B., Gregoire, J., Artificial intelligence for materials discovery. MRS Bulletin, 44(7), 538-544. doi:10.1557/mrs.2019.158 (2019).

  • Gomes, C. P.; Bai, J.; Xue, Y.; Björck, J.; Rappazzo, B.; Ament, S.; Bernstein, R.; Kong, S.; Suram, S. K.; van Dover, R. B.; Gregoire, J. M., CRYSTAL: a multi-agent AI system for automated mapping of materials' crystal structures. MRS Communications 9 (2), 600-608, DOI: 10.1557/mrc.2019.50 (2019).

  • Gurudayal, G., Beeman, J., Bullock, J., Wang, H., Eichhorn, Towle, C., Javey, A., Toma, F., Mathews, N., Ager, J. Si Photocathode with Ag-Supported Dendritic Cu Catalyst for CO2 Reduction. Energy Environ. Sci., DOI: 10.1039/C8EE03547D (2019).

  • Gurudayal, G., Perone, D., Malani, S., Lum, Y., Haussener, S., Ager, J. Sequential Cascade Electrocatalytic Conversion of Carbon Dioxide to C-C Coupled Products. ACS Appl. Energy Materials, DOI: https://doi.org/10.1021/acsaem.9b00791 (2019).

  • Ho, A., Zhou, X., Han, L., Sullivan, I., Karp, C., Lewis, N., Xiang, C. Decoupling H2(g) and O2(g) Production in Water Splitting by a Solar-Driven V3+/2+(aq,H2SO4)|KOH(aq) Cell. ACS Energy Letters, 4, 968-976, DOI: 10.1021/acsenergylett.9b00278 (2019).

  • Huang, Y., Kang, J., Goddard, W., Wang, L.-W. Density functional theory based neural network force fields from energy decompositions. Phys. Rev. B 99, 064103, DOI: https://doi.org/10.1103/PhysRevB.99.064103 (2019).

  • Hull, C., Raj, S., Lam, R., Katayama, T., Pascal,T., Drisdell, W.s., Saykally, R., Schwartz, C. Early time dynamics of laser-ablated silicon using ultrafast grazing incidence X-ray scattering. Chem Phys. Letters 736, 136811, DOI: https://doi.org/10.1016/j.cplett.2019.136811 (2019).

  • Jermyn, A., Tagliabue, G., Atwater, H., Goddard, W., Narang, P., Sundararaman, R. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Materials, 3, 075201, DOI: https://doi.org/10.1103/PhysRevMaterials.3.075201 (2019).

  • Jiang, C.-M., Reyes-Lillo, S., Liang, Y., Liu, Y.-S., Liu, G., Toma, F., Prendergast, D., Sharp, I., Cooper, J. The Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes. Chemistry of Materials, DOI: 10.1021/acs.chemmater.9b00009 (2019).

  • Jiang, H., Kammel, M., Ding, F., Dorenkamp, Y., Manby, F., Wodtke, A., Miller, T., Kandratsenka, A., Bunermann, O. Imaging covalent bond formation by H atom scattering from graphene. Science, 364 (6438), 379-382, DOI: 10.1126/science.aaw6378 (2019).

  • Jouny, M., Lv, J.-J., Cheng, T., Ko, B., Zhu, J.-J., Goddard, W., Jiao, F. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nature Chemistry, 11, 846-851, DOI: https://doi.org/10.1038/s41557-019-0312-z (2019).

  • Kempler, P., Fu, H., Ifkovits, Z., Papadantonakis, K., Leiws, N. Spontaneous Formation of >90% Optically Transmissive, Electrochemically Active CoP Films for Photoelectrochemical Hydrogen Evolution. J. Phys. Chem. Lett., 11, 14-20, DOI: https://doi.org/10.1021/acs.jpclett.9b02926 (2019).

  • Kistler, T., Danilovic, N., Agbo, P. Editors' Choice—A Monolithic Photoelectrochemical Device Evolving Hydrogen in Pure Water. J. Electrochem. Soc., 166 (13), H656-H661, DOI: 10.1149/2.1151913jes (2019).

  • Kudrawiec, R., Janicki, L., Linhart, W. M., Mayer, M. A., Sharp, I. D., Choi, S., Bierwagen, O., Speck, J. S., Walukiewicz, W. Photoreflectance and photoinduced microwave reflectance studies of surface band bending in Mg-doped InN. Journal of Applied Physics 126, 045712, DOI: https://doi.org/10.1063/1.5096528 (2019).

  • Kusoglu, A., Vezzu, K., Hedge, G., Nawn, G., Motz, A., Sadore, H., Haugen, G., Yang, Y., Seifert, S., Yandrasits, M., Hamrock, S., Maupin, M., Weber, A., Di Noto, V., Herring, A. Transport and Morphology of a Proton Exchange Membrane Based on a Doubly Functionalized Perfluorosulfonic Imide Side Chain Perflourinated Polymer. Chem. Mater., DOI: https://doi.org/10.1021/acs.chemmater.8b05012 (2019).

  • Lai, Y., Jones, R., Wang, Y., Zhou, L., Gregoire. Scanning Electrochemical Flow Cell with Online Mass Spectroscopy for Accelerated Screening of Carbon Dioxide Reduction Electrocatalysts. ACS Comb. Sci., DOI: https://doi.org/10.1021/acscombsci.9b00130 (2019).

  • Li, F., Thevenon, A., Rosas-Hernandez, A., Wang, Z., li, Y., Gabardo, C., Ozden, A., Dinh, C., Li, Y., Wang, Y., Edwards, J., Xu, Y., McCallum, C., Tao, L., Liang, Z., Luo, M., Wang, Z., Li, H., O-Brien, C., Tan, C., Nam, D., Quintero-Bermudez, R., Zhuang, T., Li, Y., Han, Z., Britt, D., Sinton, D., Agapie, T., Peters, J., Sargent, E. Molecular tuning of CO2-to-ethylene conversion. Nature, DOI: https://doi.org/10.1038/s41586-019-1782-2 (2019).

  • Li, L., Yang, J., Ali-Loytty, H., Weng, T.-C., Toma, F., Sokaras, D., Sharp, I., Nilsson, A. Operando observation of chemical transformations of iridium oxide during photoelectrochemical water oxidation. ACS Appl. Energy Mater. DOI: 10.1021/acsaem.8b01945 (2019).

  • Li, M., Duanmi, K., Wan, C., Cheng, T., Zhang, L., Dai, S., Chen, W., Zhiao, Z., Li, P., Fei, H., Zhu, Y., Yu, R., Luo, J., Zang, K., Lin, Z., Ding, M., Huang, J., Sun, H., Guo, J., Pan, X., Goddard, W., Sautet, P., Huang, Y., Duan, X. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, DOI:

    https://doi.org/10.1038/s41929-019-0279-6 (2019).

  • Lin, M., Han, L., Singh, M., Xiang, C., An Experimental- and Simulation-Based Evaluation of the CO2 Utilization Efficiency of Aqueous-Based Electrochemical CO2 Reduction Reactors with Ion-Selective Membranes. ACs Appl. Energy Mater., https://doi.org/10.1021/acsaem.9b00986 (2019).

  • Liu, X., Schlexer, P., Xiao, J., Ji, Y., Wang, L., Sandberg, R., Tang, M., Brown, K., Peng, H., Ringe, S., Hahn, C., Jaramillo, T., Norskov, J., Chan, K. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nature Comm., 10, DOI: 10.1038/s41467-018-07970-9 (2019).

  • Liu, Y.-Y., Zheng, F., Jiang, X., Luo, J.-W., Li, S.-S., Wang, L-W. Ab Initio Investigation of Charge Trapping Across the Crystalline-Si–Amorphous-SiO2 Interface. Phys. Rev. Applied 11, 044058, DOI: 10.1103/PhysRevApplied.11.044058 (2019).

  • Liu, Y.-Y., Liu, F., Wang, R., Luo, J.-W., Jiang, X., hung, R., Li, S.-S., Wang, L.-W. Characterizing the Charge Trapping across Crystalline and Amorphous Si/SiO2/HfO2 Stacks from First-Principle Calculations. Phys. Rev. Applied, 12, 064012, DOI: https://doi.org/10.1103/PhysRevApplied.12.064012 (2019).

  • Moreno-Hernandez, I., Brunschwig, B., Lewis, N. Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction. Energy Environ. Sci., DOI: 10.1039/C8EE03676D (2019).

  • Naserifar, S. and Goddard, W. A. Liquid water is a dynamic polydisperse branched polymer. Proceedings of the National Academy of Sciences, DOI: https://doi.org/10.1073/pnas.1817383116 (2019).

  • Naserifar, S. and Goddard, W. A. Anomalies in Supercooled Water at ∼230 K Arise from a 1D Polymer to 2D Network Topological Transformation. J. Phys. Chem. Lett. 10(20), 6267-6273, DOI: https://doi.org/10.1021/acs.jpclett.9b02443 (2019).

  • Naserifar, S., Oppenheim, J., Yang, H., Zhou, T., Zybin, S., Rizk, M., Goddard, W. Accurate non-bonded potentials based on periodic quantum mechanics calculations for use in molecular simulations of materials and systems. J. Chem. Phys. 151, 154111, DOI: https://doi.org/10.1063/1.5113811 (2019).

  • Nguyen, A. I., Van Allsburg, K., Terban, M., Bajdich, M., Oktawiec, J., Amtawong, J., Ziegler, M., Dombrowski, J., Lakshmi, K., Drisdell, W., Yano, J., Billinge, S., and Tilley, D. Stabilization of reactive Co4O4 cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Science, DOI: https://doi.org/10.1073/pnas.1815013116 (2019).

  • Nitopi, S., Bertheussen, E., Scott, S., Liu, X., Engstfeld, A., Horch, S., Seger, B., Stephens, I., Chan, K., Hahn, C., Norskov, J., Jaramillo, T., Chorkendorff, I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev., DOI: https://doi.org/10.1021/acs.chemrev.8b00705 (2019).

  • Noh, J., Kim, S., Gu, G. H., Shinde, A., Zhou, L., Gregoire, J., Jung, Y. Unveiling new stable Manganese based photoanode materials via theoretical high-throughput screening and experiments. Chemical Communications, DOI: 10.1039/C9CC06736A (2019).

  • Noh, J., Kim, J., Stein, H., Sanchez-Lengeling, B., Gregoire, J., Aspuru-Guzik, A., Jung, Y. Inverse Design of Solid-State Materials via a Continuous Representation. Matter, DOI: https://doi.org/10.1016/j.matt.2019.08.017 (2019).

  • Nunez, P., Richter, M., Piercy, B., Roske, C., Caban-Acevedo, M., Losego, M., Konezny, S., Fermin, D., Hu, S., Brunschwig, B., Lewis, N. Characterization of Electronic Transport through Amorphous TiO2 Produced by Atomic-Layer Deposition. J. Phys. Chem. C, DOI: https://doi.org/10.1021/acs.jpcc.9b04434 (2019).

  • Ostericher, A., Porter, T., Reineke, M., Kubiak, C. Thermodynamic Targeting of Electrocatalytic CO2 Reduction: Advantages, Limitations, and Insights for Catalyst Design. Dalton Trans., DOI: 10.1039/C9DT03255J (2019).

  • Qian, J., Ye, Y., Yang, H., Yano, J., Crumlin, E., Goddard, W. Initial steps in forming the electrode electrolyte interface: H2O adsorption and complex formation on the Ag(111) surface from combining Quantum Mechanics calculations and X-ray Photoelectron Spectroscopy. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b13672 (2019).

  • Ringe, S., Clark, E., Resasco, J., Walton, A., Seger, B., Bell, A., Chan, K. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci., DOI: 10.1039/C9EE01341E (2019).

  • Scott, S., Hogg, T., Landers, A., Maagaard, T., Bertheussen, E., Lin, J., Davis, R., Beeman, J., Higgins, D., drisdell, W., Hahn, C., Mehta, A., Seger, B., Jaramillo, T., Chorkendorff, I. Absence of Oxidized Phases in Cu Under CO Reduction Conditions. ACS Energy Letters, DOI: 10.1021/acsenergylett.9b00172 (2019).

  • Shen, S., Zhang, X., Mubeen, S., Soriaga, M., Stickney, J. Optimization of the nucleation-site density for the electrodeposition of cadmium sulfide on indium-tin-oxide. Electrochimica Acta, DOI: https://doi.org/10.1016/j.electacta.2019.05.120 (2019).

  • Singh, A., Montoya, J., Gregoire, J., Persson, K. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nature Communications, 10, 443, DOI: https://doi.org/10.1038/s41467-019-08356-1 (2019).

  • Soedarmadji, E., Stein, H., Suram, S., Guevarra, D., Gregoire, J. Tracking materials science data lineage to manage millions of materials experiments and analyses. npj Computational Materials, 5, 79, DOI: https://doi.org/10.1038/s41524-019-0216-x (2019).

  • Song, T.-B., Yan, Z., Mori, M., Motiwala, F., Segev, G., Masquelier, E., Stan, C., Slack, J., Tamura, N., Sutter-Fella, C. Revealing the Dynamics of Hybrid Metal Halide Perovskite Formation via Multimodal In Situ Probes. Adv. Funct. Mater. 2019, 1908337, DOI: https://doi.org/10.1002/adfm.201908337 (2019).

  • Stein, H. and Gregoire, J. Progress and prospects for accelerating materials science with automated and autonomous workflows. Chemical Science, DOI: 10.1039/C9SC03766G (2019).

  • Stein, H., Guevarra, D., Shinde, A., Jones, R., Gregoire, J., Haber, J. Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)Ox composition and pH space. Material Horizons, DOI: 10.1039/C8MH01641K (2019).

  • Stein, H., Soedarmadji, E., Newhouse, P., Guevarra, D., Gregoire, J. Synthesis, optical imaging, and absorption spectroscopy data for 179072 metal oxides. Scientific Data, DOI: https://doi.org/10.1038/s41597-019-0019-4 (2019).

  • Subramanian, S., Oppenhaim, J., Kim, D., Nguyen, T., Silo, W., Kim, B., Goddard, W., Yavuz, C. Catalytic Non-redox Carbon Dioxide Fixation in Cyclic Carbonates. Chem, DOI: https://doi.org/10.1016/j.chempr.2019.10.009 (2019).

  • Sullivan, I., Han, L., Lee, S. H., Lin, M., Larson, D., Drisdell, W., Xiang, C. A Hybrid Catalyst-Bonded Membrane Device for Electrochemical Carbon Monoxide Reduction at Different Relative Humidities. ACS Sustainable Chem. Eng., DOI: https://doi.org/10.1021/acssuschemeng.9b04959 (2019).

  • Tesfaye, M., Kushner, D., Kusoglu, A. Interplay between Swelling Kinetics and Nanostructure in Perfluorosulfonic Acid Thin-Films: Role of Hygrothermal Aging. ACS Applied Polymer Materials, DOI: 10.1021/acsapm.9b00005 (2019).

  • Thevenon, A., Rosas-Hernandez, A., Peters, J., Agapie, T. In‐situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO2 Reduction to Ethylene. Angew. Chem. Int. Ed. DOI: 10.1002/anie.201907935 (2019).

  • Umehara, M., Stein, H., Guevarra, D., Newhouse, P., Boyd, D., Gregoire, J. Analyzing machine learning models to accelerate generation of fundamental materials insights. Nature Computational Materials, DOI: https://doi.org/10.1038/s41524-019-0172-5 (2019).

  • Wang, H., Liang, Z., Tang, M., Chen, G., Li, Y., Chen, W., Lin, D., Zhang, Z., Zhou, G., Li, J., Lu, Z., Chan, K., Tan, T., Cui, Y. Self-Selective Catalyst Synthesis for CO2 Reduction. Joule, https://doi.org/10.1016/j.joule.2019.05.023 (2019).

  • Wang, L., Nitopi, S., Wong, A., Snider, J., Nielander, A., Morales-Guio, C., Orazov, M., Higgins, D., Hahn, C., Jaramillo, T. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nature Catalysis, DOI: https://doi.org/10.1038/s41929-019-0301-z (2019).

  • Weng, L.-C., Bell, A., Weber, A. Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci., DOI: 10.1039/C9EE00909D (2019).

  • Yalamanchili, S., Kempler, P., Papadantonakis, K., Atwater, H., Lewis, N. Integration of electrocatalysts with silicon microcone arrays for minimization of optical and overpotential losses during sunlight-driven hydrogen evolution. Sustainable Energy Fuels, DOI: 10.1039/C9SE00294D (2019).

  • Yalamanchili, S., Verlage, E., Cheng, W.-H., Fountaine, K., Jahelka, P., Kempler, P., Saive, R., Lewis, N., Atwater, H. High Broadband Light Transmission for Solar Fuels Production Using Dielectric Optical Waveguides in TiO2 Nanocone Arrays. Nano Lett., DOI: https://doi.org/10.1021/acs.nanolett.9b04225 (2019).

  • Yao, Y., Shushkov, P., Miller, T., Giapis, K. Direct dioxygen evolution in collisions of carbon dioxide with surfaces. Nature Communications, DOI: https://doi.org/10.1038/s41467-019-10342-6 (2019).

  • Ye, Y., Yang, H., Qian, J., Su, H., Lee, K.-J., Cheng, T., Xiao, H., Yano, J., Goddard, W., Crumlin, E. Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper. Nature Comm., 10, 1875, DOI: 10.1038/s41467-019-09846-y (2019).

  • Zhang, Z., Lindley, S., Dhall, R., Bustillo, K., Han, W., Xie, E., Cooper, J. Beneficial CuO Phase Segregation in the Ternary p-Type Oxide Photocathode CuBi2O4. ACS Appl. Energy Mater., DOI: https://doi.org/10.1021/acsaem.9b00297 (2019).

  • Zhang, H., Chang, X., Chen, J., Goddard, W., Xu, B., Cheng, M.-J., Lu, Q. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nature Comm. 10, 3340, DOI: https://doi.org/10.1038/s41467-019-11292-9 (2019).

  • Zheng, F, Wang, L.-W. Large polaron formation and its effect on electron transport in hybrid perovskites. Energy & Environmental Science, DOI: 10.1039/C8EE03369B (2019).

  • Zheng, F., Wang L.-W. Ultrafast Hot Carrier Injection in Au/GaN: The Role of Band Bending and the Interface Band Structure. J. Phys. Chem. Lett., DOI: https://doi.org/10.1021/acs.jpclett.9b02402 (2019).

  • Zhou, J.-J. and Bernardi, M. Predicting charge transport in the presence of polarons: The beyond-quasiparticle regime in SrTiO3. Physical Review Research, 1, 033138, DOI: https://doi.org/10.1103/PhysRevResearch.1.033138 (2019).

  • Zhou, Y., Gao, G., Chu, W., Wang, L.-W. Computational screening of transition metal-doped phthalocyanine monolayers for oxygen evolution and reduction. Nanoscale Adv., DOI: 10.1039/C9NA00648F (2019).

+ 2018

  • Ager, J., Lapkin, A., Chemical storage of renewable energy. Science, 360 (6390), 707-708, DOI: 10.1126/science.aat7918 (2018).

  • Ager, J. W. Chapter 6 Heterojunction Approaches for Stable and Efficient Photoelectrodes. Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 183-213, DOI: 10.1039/9781788010313-00183 (2018).

  • Ardo, S., et al. Pathways to Electrochemical Solar-Hydrogen Technologies. Energy & Environmental Science, DOI: 10.1039/C7EE03639F (2018).

  • Baricuatro, J. H., Kim, Y.-G., Korzeniewski, C. L., Soriaga, M. P. Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO2-reduction potentials. Electrochemistry Communications, 91, 1-4, DOI: https://doi.org/10.1016/j.elecom.2018.04.016 (2018).

  • Bariya, M., Shahpar, Z., Park, H.,  Sun, J., Jung, Y., Gao, W.,   Nyein, H.,  Liaw, T., Tai, L.-C., Ngo, Q., Chao, M.,  Zhao, Y.,  Hettick, M., Cho, G., Javey, A. Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices. ACS Nano, DOI: 10.1021/acsnano.8b02505 (2018).

  • Bell, A. T. Chapter 3 Understanding the Effects of Composition and Structure on the Oxygen Evolution Reaction (OER) Occurring on NiFeOx Catalysts, Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 79-116, DOI: 10.1039/9781788010313-00079 (2018).

  • Brinkert, K., Richter, M., Akay, O., Fountaine, K., Lewerenz, H.-J. Advancing semiconductor–electrocatalyst systems: application of surface transformation films and nanosphere lithography. Faraday Discussions, DOI: 10.1039/C8FD00003D (2018).

  • Bullock, J., Wan, Y., Xu, Z., Essig, S., Hettick, M., Wang, H., Ji, W., Boccard, M., Cuevas, A., Ballif, C., Javey, A. Stable Dopant-free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies Above 20% . ACS Energy Letters, DOI: 10.1021/acsenergylett.7b01279 (2018).

  • Cave, E. R., Shi, C., Kuhl, K. P., Hatsukade, T., Abram, D. N., Hahn, C., Chan, K., Jaramillo, T. Trends in the Catalytic Activity of Hydrogen Evolution during CO2 Electroreduction on Transition Metals, ACS Catalysis, 8, 3035-3040, DOI: 10.1021/acscatal.7b03807 (2018).

  • Chapovetsky, A., Welborn, M., Luna, J. M., Haiges, R., Miller, T., Marinescu, S. C. Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction. ACS Cnetral Science, DOI: 10.1021/acscentsci.7b00607 (2018).

  • Cheng, T., Jaramillo-Botero, A., An, Q., Ilyin, D., Naserifar, S., Goddard, W. First principles-based multiscale atomistic methods for input into first principles nonequilibrium transport across interfaces. PNAS, DOI: https://doi.org/10.1073/pnas.1800035115(2018).

  • Cheng, T., Wang, L., Merinov, B., Goddard, W. A. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b04006 (2018).

  • Cheng, W.-H., Richter, M., May, M., Ohlmann, J., Lackner, D., Dimroth, F., Hannappel, T., Atwater, H., Lewerenz, H.-J. Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency. ACS Energy Letters, 3, 1795-1800, DOI: 10.1021/acsenergylett.8b00920 (2018).

  • Choi, C., Cheng, T., Espinosa, M., Fei, H., Duan, X., Goddard, W., Huang, Y. A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials. Advanced Materials, DOI: https://doi.org/10.1002/adma.201805405 (2018).

  • Clark, E. and Bell, A. Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO2. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b04058 (2018).

  • Clark, E., Resasca, J., Landers, A., Lin, A., Chng, L.-T., Walton, A., Hahn, C., Jaramillo, T., Bell, A. Data Acquisition Protocols and Reporting Standards for Studies of the Electrochemical Reduction of Carbon Dioxide. ACS Catalysis, DOI: 10.1021/acscatal.8b01340 (2018).

  • Cooper, J. K., Reyes-Lillo, S., Hess, L., Jiang, C.-M., Neaton, J., Sharp, I. Physical Origins of the Transient Absorption Spectra and Dynamics in Thin-Film Semiconductors: The Case of BiVO4. J. Phys. Chem. C DOI: 10.1021/acs.jpcc.8b06645 (2018).

  • Cornejo, J., Sheng, H., Edri, E., Ajo-Franklin, C., Frei, H. Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface. Nature Comm., 9, 2263, DOI: 10.1038/s41467-018-04707-6 (2018).

  • Corson, E., Creel, E., Kim, Y., Urban, J., Kostecki, R., McCloskey, B. A temperature-controlled photoelectrochemical cell for quantitative product analysis. Review of Scientific Instruments, 89, 055112, DOI: https://doi.org/10.1063/1.5024802 (2018).

  • DuChene, J., Tagliabue, G., Welch A. J., Cheng, W.-H., and Atwater, H. A. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes., Nano Letters, DOI: 10.1021/acs.nanolett.8b00241 (2018).

  • Edri, E., Aloni, S., Frei, H. Fabrication of Core–Shell Nanotube Array for Artificial Photosynthesis Featuring an Ultrathin Composite Separation Membrane. ACS Nano, 12(1), 533-541, DOI: 10.1021/acsnano.7b07125 (2018).

  • Eichhorn, J., Liu, G., Toma, F. M. Chapter 8 Degradation of Semiconductor Electrodes in Photoelectrochemical Devices: Principles and Case Studies. Book Section in Integrated Solar Fuels Generators, The Royal Society of Chemistry, 281-303, DOI: 10.1039/9781788010313-00281 (2018).

  • Fields, M., Hong, X., Norskov, J., Chan, K. Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction. J. Phys. Chem C, DOI: 10.1021/acs.jpcc.8b04983 (2018).

  • Finke, C., Omelchenko, S., Jasper, J., Lichterman, M., Read, C., Lewis, N., Hoffmann, M. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy. Environ. Sci, DOI: 10.1039/C8EE02351D (2018).

  • Francis, S., Velazquez, J., Ferrer, I., Torelli, D., Guevarra, D., McDowell, M., Sun, K., Zhou, X., Saadi, F., John, J., Richter, M., Hyler, F., Papadantonakis, K., Brunschwig, B., Lewis, N. Reduction of aqueous CO2 to 1-Propanol at MoS2 electrodes. Chem. Mater., DOI: 10.1021/acs.chemmater.7b04428 (2018).

  • Friebel, D. Chapter 4 Surface Science, X-ray and Electron Spectroscopy Studies of Electrocatalysis, Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 117-153, DOI: 10.1039/9781788010313-00117 (2018).

  • Garza, A. J., Bell, A. T., Head-Gordon, M. Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO2 on Copper? J. Phys. Chem. Lett. 9(3), 601-601, DOI: 10.1021/acs.jpclett.7b03180 (2018).

  • Garza, A. J., Bell, A. T., Head-Gordon, M. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C-2 Products. ACS Catalysis, 8(2), 1490-1499, DOI: 10.1021/acscatal.7b03477 (2018).

  • Garza, A., Bell, A., Head-Gordon, M. Nonempirical Meta-Generalized Gradient Approximations for Modeling Chemisorption at Metal Surfaces. J. Chem. Theory Comput., DOI: 10.1021/acs.jctc.8b00288 (2018).

  • Greenblatt, J. B. Chapter 2 Photo-electrochemical Hydrogen Plants at Scale: A Life-cycle Net Energy Assessment, Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 43-78, DOI: 10.1039/9781788010313-00043 (2018).

  • Greenblatt, J. B., Miller, D. J., Ager, J. W., Houle, F. A., Sharp, I. D. The Technical and Energetic Challenges of Separating (Photo)Electrochemical Carbon Dioxide Reduction Products. Joule, https://doi.org/10.1016/j.joule.2018.01.014 (2018).

  • Gregoire, J. M., Boyd, D. A., Guevarra, D., Haber, J. A., Jones, R., Kan, K., Marcin, M., Newhouse, P. F., Shinde, A., Soedarmadji, E., Suram, S. K., Zhou, L. Chapter 9 High Throughput Experimentation for the Discovery of Water Splitting Materials. Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 305-340, DOI: 10.1039/9781788010313-00305 (2018).

  • Han, L., Zhou, W., Xiang, C. High Rate Electrochemical Reduction of Carbon Monoxide to Ethylene using Cu-Nanoparticle-Based Gas Diffusion Electrodes. ACS Energy Letters, DOI: 10.1021/acsenergylett.8b00164 (2018)

  • Hashiba, H., Weng, L.-C., Chen, Y., Sate, H. K., Yotsuhashi, S., Xiang, C., Weber, A. Effects of Electrolyte Buffer Capacity on Surface Reactant Species and the Reaction Rate of CO2 in Electrochemical CO2 Reduction. DOI: 10.1021/acs.jpcc.7b11316 (2018).

  • Higgins, D., Landers, A., Ji, S., Nitopi, S., Morales-Guio, C., Wang, L., Chan, K., Hahn, C., Jaramillo, T. Guiding Electrochemical Carbon Dioxide Reduction toward Carbonyls Using Copper Silver Thin Films with Interphase Miscibility. ACS Energy Letters, 3, 2947-2955, DOI: 10.1021/acsenergylett.8b01736 (2018).

  • Higgins, D., Hahn, C., Xiang, C., Jaramillo, T., Weber, A. Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm. ACS Energy Letters, 4, 317-324, DOI: 10.1021/acsenergylett.8b02035 (2018).

  • Huang, Y., Chen, Y., Cheng, T., Wang, L.-W., Goddard, W. Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning. ACS Energy Letters, DOI: 10.1021/acsenergylett.8b01933 (2018).

  • Huang, Y., Nielsen, R., Goddard, W. Reaction Mechanism for the Hydrogen Evolution Reaction on the Basal Plane Sulfur Vacancy Site of MoS2 Using Grand Canonical Potential Kinetics. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b10016 (2018).

  • Jiang, C.-M., Segev, G., Hess, L. H., Liu, G., Zaborski, G., Toma, F. M., Cooper, J. K., Sharp, I. D. Composition-Dependent Functionality of Copper Vanadate Photoanodes. ACS Applied Materials & Interfaces. DOI: 10.1021/acsami.8b02977 (2018).

  • Jiang, K., Sandberg, R. B., Akey, A. J., Liu, X., Bell, D. C., Norskov, J. K., Chan, K., Wang, H. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nature Catalysis, DOI: 10.1038/s41929-017-0009-x (2018).

  • Jones, R., Wang, Y., Lai, Y., Shinde, A., Gregoire, J. Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction. Review of Scientific Instruments, 89, 124102, DOI: https://doi.org/10.1063/1.5049704 (2018).

  • Kempler, P. A., Gonzales, M. A., Papadantonakis, K., Lewis, N. Hydrogen Evolution with Minimal Parasitic Light Absorption by Dense Co–P Catalyst Films on Structured p-Si Photocathodes. ACS Energy Letters, 3(3), 612-617, DOI: 10.1021/acsenergylett.8b00034 (2018).

  • Kim, Y.-G., Baricuatro, J. H., Soriaga, M. P. Surface Reconstruction of Polycrystalline Cu Electrodes in Aqueous KHCO3 Electrolyte at Potentials in the Early Stages of CO2 Reduction. Eletcrocatalysis, DOI: https://doi.org/10.1007/s12678-018-0469-z (2018).

  • Kim, Y., Creel, E., Corson, E., McCloskey, B., Urban, J., Kostecki, R. Surface‐Plasmon‐Assisted Photoelectrochemical Reduction of CO2 and NO3− on Nanostructured Silver Electrodes. Advanced Energy Materials, DOI: https://doi.org/10.1002/aenm.201800363 (2018).

  • Kistler, T., Larson, D., Walczack, K., Agbo, P., Sharp, I., Weber, A., Danilovic, N. Integrated Membrane-Electrode-Assembly Photoelectrochemical Cell under Various Feed Conditions for Solar Water Splitting. J. Electrochem. Soc., 166(5), H3020-H3028, DOI: 10.1149/2.0041905jes (2018).

  • Lam, R. K., Raj, S. L., Pascal, T. A., Pemmaraju, C. D., Foglia, L., Simoncig, A., Fabris, N., Miotti, P., Hull, C. J., Rizzuto, A. M., Smith, J. W., Mincigrucci, R., Masciovecchio, C., Gessini, A., Allaria, E., De Ninno, G., Diviacco, B., Roussel, E., Spampinati, S., Penco, G., Di Mitri, S., Trovò, M., Danailov, M., Christensen, S. T., Sokaras, D., Weng, T. C., Coreno, M., Poletto, L., Drisdell, W. S., Prendergast, D., Giannessi, L., Principi, E., Nordlund, D., Saykally, R. J., Schwartz, C. P. Soft X-Ray Second Harmonic Generation as an Interfacial Probe. Physical Review Letters, 120, 023901, DOI: https://doi.org/10.1103/PhysRevLett.120.023901 (2018).

  • Lam, R. K., et al. Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge. Chemical Physics Letters, 703, 112-166, DOI: https://doi.org/10.1016/j.cplett.2018.05.021 (2018).

  • Landers, A., Fields, M., Torelli, D., Xia, J., Hellstern, T., Francis, S., Tsai, C., Kibsgaard, J., Lewis, N., Chan, K., Hahn, C., Jaramillo, T. The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO2 Reduction Conditions: An Experimental and Theoretical Study. ACS Energy Letters, 3(6), 1450, DOI: 10.1021/acsenergylett.8b00237 (2018).

  • Lee, N.-E., Zhou, J.-J., Agapito, L. A., Bernardi, M. Charge transport in organic molecular semiconductors from first principles: The bandlike hole mobility in a naphthalene crystal. Physical Review B, 97, 115203, DOI: https://doi.org/10.1103/PhysRevB.97.115203 (2018).

  • Lewerenz, H. J., Sharp, I. D., Chapter 1 Concepts of Photoelectrochemical Energy Conversion and Fuel Generation, Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 1-42, DOI: 10.1039/9781788010313-00001 (2018).

  • Lindley, S. A., Cooper, J. K., Rojas-Andrade, M. D., Fung, V., Leahy, C. J., Chen, S., Zhang, J. Z. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds. ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.8b00726 (2018).

  • Liu, G., Eichhorn, J., Jiang, C.-M., Scott, M., Hess, L., Gregoire, J., Haber, J., Sharp, I., Toma, F. Interface engineering for light-driven water oxidation: Unravelling the passivating and catalytic mechanism in BiVO4 overlayers. Sustainable Energy Fuels, DOI: 10.1039/C8SE00473K (2018).

  • Lu, Z., Chen, G., Siahrostami, S., Chen, Z., Liu, K., Xie, J., Liao, L., Wu, T., Lin, D., Liu, Y., Jaramillo, T., Norskov, J., Cui, Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, DOI: 10.1038/s41929-017-0017-x (2018).

  • Lum, Y and Ager, J. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci., DOI: 10.1039/C8EE01501E (2018).

  • Lum, Y. and Ager, J., Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nature Catalysis, DOI: 10.1038/s41929-018-0201-7 (2018).

  • Lum, Y, Cheng, T., Goddard, W., Ager, J. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b03986 (2018).

  • McCrory, C. C. L., Suho, J., Jeremy, K. Chapter 5 Evaluating Electrocatalysts for Solar Water-splitting Reactions. Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 154-181, DOI: 10.1039/9781788010313-00154 (2018).

  • Miller, D., Houle, F. Chapter 10 Membranes for Solar Fuels Devices. Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 341-385, DOI: 10.1039/9781788010313-00341 (2018).

  • Morales-Guio, C., Cave, E., Nitopi, S., Feaster, J., Wang, L., Kuhl, K., johnson, N., Abram, D., Hatsukade, T., Hahn, C., Jaramillo, T. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal., 1, 764-771, DOI: 10.1038/s41929-018-0139-9 (2018).

  • Moreno-Hernandez, I., Brunschwig, B., Lewis, N. Tin Oxide as a Protective Heterojunction with Silicon for Efficient Photoelectrochemical Water Oxidation in Strongly Acidic or Alkaline Electrolytes. Advanced Energy Materials, DOI: https://doi.org/10.1002/aenm.201801155 (2018).

  • Newhouse, P., Guevarra, D., Umehara, M., Reyes-Lillo, S., Zhou, L., Boyd, D., Suram, S., Cooper, J., Haber, J., Neaton, J., Gregoire, J. Combinatorial alloying improves bismuth vanadate photoanodes via reduced monoclinic distortion. Energy & Environmental Science, DOI: 10.1039/C8EE00179K (2018).

  • Newhouse, P. Guevarra, D., Umehara, M., Boyd, D., Zhou, L., Cooper, J., Haber, J., Gregoire, J. Multi-modal optimization of bismuth vanadate photoanodes via combinatorial alloying and hydrogen processing. Chemical Communications, DOI: 10.1039/C8CC07156J (2018).

  • Osowiecki, W., Ye, X., Satish, P., Bustillo, K., Clark, E., Alivasatos, P. Tailoring Morphology of Cu–Ag Nanocrescents and Core–Shell Nanocrystals Guided by a Thermodynamic Model. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b04558 (2018).

  • Ostericher, A., Waldie, K., Kubiak, C. Utilization of thermodynamic scaling relationships in hydricity to develop nickel HER electrocatalysts with weak acids and low overpotentials. ACS Catalysis, DOI: 10.1021/acscatal.8b02922 (2018).

  • Palmer, C.; Saadi, F.; McFarland, E. Technoeconomics of Commodity Chemical Production Using Sunlight. ACS Sustainable Chem. Eng., 6(5), 7003-7009, DOI: 10.1021/acssuschemeng.8b00830 (2018).

  • Resasco, J., Lum, Y., Clark, E., Zeledon, J., Bell, A. T. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem, DOI: 10.1002/celc.201701316 (2018).

  • Saadi, F. H., Lewis, N. S., McFarland, E. W. Relative costs of transporting electrical and chemical energy. Energy & Environmental Science, DOI: 10.1039/C7EE01987D (2018).

  • Segev, G., Dotan, H., Ellis, D. S., Piekner, Y., Klotz, D., Beeman, J. W., Cooper, J. K., Grave, D. A., Sharp, I. D., Rothschild, A. The Spatial Collection Efficiency of Charge Carriers in Photovoltaic and Photoelectrochemical Cells. Joule, https://doi.org/10.1016/j.joule.2017.12.007 (2018).

  • Segev, G., Jiang, C.-M., Cooper, J. K., Eichorn, J., Toma, F., Sharp, I. D. Quantification of the loss mechanisms in emerging water splitting photoanodes through empirical extraction of the spatial charge collection efficiency. Energy&Environmental Science, DOI: 10.1039/C7EE03486E (2018).

  • Segev, G., Beeman, J., Greenblatt, J., Sharp, I. Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power. Nature Materials, DOI: https://doi.org/10.1038/s41563-018-0198-y (2018).

  • Shen, H., Omelchenko, S., Jacobs, D., Yalamanchili, S., Wan, Y., Yan, D., Phang, P., Duong, T., Wu, Y., Samundsett, C., Peng, J., Wu, N., White, T., Andersson, G., Lewis, N., Catchpole, K. In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells. Science Advances, 4(12), eaau9711, DOI: 10.1126/sciadv.aau9711 (2018).

  • Shin, H., Xioa, H., Goddard, W. A. In Silico Discovery of New Dopants for Fe-Doped Ni Oxyhydroxide (Ni1–xFexOOH) Catalysts for Oxygen Evolution Reaction. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b02225 (2018).

  • Singh, M. R., Haussener, S., Weber, A., Chapter 13 Continuum-scale Modeling of Solar Water-splitting Devices. Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 500-536, DOI: 10.1039/9781788010313-00500 (2018).

  • Soniat, M. and Houle, F. Swelling and Diffusion during Methanol Sorption into Hydrated Nafion. J. Phys. Chem. B, DOI: 10.1021/acs.jpcb.8b03169 (2018).

  • Stein, H., Guevarra, D., Newhouse, P., Soedarmadji, E., Gregoire, J. Machine learning of optical properties of materials – predicting spectra from images and images from spectra. Chemical Sciences, DOI: 10.1039/C8SC03077D (2018).

  • Stoerzinger, K., Favaro, M., Ross, P., Hussain, Z., Liu, Z., Yano, J., Crumlin, E. Stabilizing the Meniscus for Operando Characterization of Platinum During the Electrolyte-Consuming Alkaline Oxygen Evolution Reaction. Topics in Catalysis, DOI: https://doi.org/10.1007/s11244-018-1063-6 (2018).

  • Sun, K., Ritzert, N. L., John, J., Tan, H., Hale, W., Joang, J., Moreno-Hernandez, I. A., Papadantonakis, K., Moffat, T., Brunschwig, B., Lewis, N. Performance and Failure Modes of Si Anodes Patterned with Thin-Film Ni Catalyst Islands for Water Oxidation. Sustainable Energy and Fuels, DOI: 10.1039/C7SE00583K (2018).

  • Suram, S. K., Zhou, L., Shinde, A., Yan, Q., Yu, Y., Umehara, M., Stein, H. S., Neaton, J., and Gregoire, J. Discovery of alkaline-stable nickel manganese oxides with visible photoresponse for solar fuels photoanodes. Chemical Communications, DOI: 10.1039/C7CC08002F (2018).

  • Sutter-Fella, C., Ngo, Q. P., Cefarin, N., Gardner, K. L., Tamura, N., Stan, C., Drisdell, W., Javey, A., Toma, F., Sharp, I. D. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites. Nano Letters, DOI: 10.1021/acs.nanolett.8b00541 (2018).

  • Swierk, J. R. and Tilley, T. D. Electrocatalytic Water Oxidation by Single Site and Small Nuclearity Clusters of Cobalt. Journal of the Electrochemical Society, 165(4), H3028-H3033, DOI: 10.1149/2.0041804jes (2018).

  • Tagliabue, G., Jermyn, A., Sundararaman, R., Welch, A., DeChene, J., Pala, R., Dovoyan, A., Narang, P., Atwater, H. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nature Comm., 9, 3394, DOI: https://doi.org/10.1038/s41467-018-05968-x (2018).

  • Tang, M., Ulissi, Z., Chan, K. Theoretical Investigations of Transition Metal Surface Energies under Lattice Strain and CO Environment. J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.8b02094 (2018).

  • Tesfaye, M., Kushner, D., McCloskey, B., Weber, A., Kusoglu, A. Thermal Transitions in Perfluorosulfonated Ionomer Thin-Films. ACS Macro Letters, 7, 1237-1242, DOI: 10.1021/acsmacrolett.8b00628 (2018).

  • Tsang, C., Javier, A., Kim, Y.-G., Baricuatro, J., Cummins, K., Kim, J., Jerkiewicz, G., Hemminger, J., Soriaga, J. Potential-Dependent Adsorption of CO and Its Low-Overpotential Reduction to CH3CH2OH on Cu(511) Surface Reconstructed from Cu(pc): Operando Studies by Seriatim STM-EQCN-DEMS. J. Electrochem. Soc. 165, J3350-J3354, DOI: 10.1149/2.0451815jes (2018).

  • Waldie, K., Ostericher, A. L., Reineke, M. H., Sasayama, A. F., Kubiak, C. P. Hydricity of Transition-Metal Hydrides: Thermodynamic Considerations for CO2 Reduction. ACS Catalysis, 8(2), 1313-1324, DOI: 10.1021/acscatal.7b03396 (2018).

  • Waldie, K., Brunner, F. M., Kubiak, C. P., Transition Metal Hydride Catalysts for Sustainable Interconversion of CO2 and Formate: Thermodynamic and Mechanistic Considerations. ACS Sustainable Chemistry & Engineering, DOI: 10.1021/acssuschemeng.8b00628 (2018).

  • Wan, Y., Bullock, J., Xu, Z., Yan, D., Peng, J., Javey, A., Cuevas, A. Zirconium oxide surface passivation of crystalline silicon. Appl. Phys. Lett., 112, 201604, DOI: https://doi.org/10.1063/1.5032226 (2018).

  • Wan, Y., Bullock, J., Hettick, M., Xu, Z., Samundsett, C., Yan, D., Peng, J., Ye, J., Javey, A., Cuevas, A. Temperature and Humidity Stable Alkali/Alkaline‐Earth Metal Carbonates as Electron Heterocontacts for Silicon Photovoltaics. Advanced Energy Materials, DOI: https://doi.org/10.1002/aenm.201800743 (2018).

  • Wang, L., Goddard, W., Cheng, T., Xiao, H., Li, Y. In Silico Optimization of Organic-Inorganic Hybrid Perovskites for Photocatalytic Hydrogen Evolution Reaction in Acidic Solution. J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.8b07380 (2018).

  • Wang, L., Xiao, H., Cheng, T., Li, Y., Goddard, W. A. Pb-Activated Amine-Assisted Photocatalytic Hydrogen Evolution Reaction on Organic–Inorganic Perovskites. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b12028 (2018).

  • Wang, L., Nitopi, S., Bertheussen, E., Orazov, M., Morales-Guio, C., Liu, X., Higgins, D., Cahn, K., Norskov, J., Hahn, C., Jaramillo, T. Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catalysis, DOI: DOI: 10.1021/acscatal.8b01200 (2018).

  • Wang, Z., Wu, L., Sun, K., Jiang, Z., Cheng, T., Goddard, W. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates. J. Phys. Chem. Lett., 9, 3057-3061, DOI: 10.1021/acs.jpclett.8b00959 (2018).

  • Welborn, M., Manby, F., Miller, T. Even-handed subsystem selection in projection-based embedding. The Journal of Chemical Physics, 149, 144101, DOI: https://doi.org/10.1063/1.5050533 (2018).

  • Welch, A., DuChene, J., Tagliabue, G., Danoyan, A., Cheng, W.-H., Atwater, H. Nanoporous Gold as a Highly Selective and Active Carbon Dioxide Reduction Catalyst. ACS Applied Energy Materials, DOI: 10.1021/acsaem.8b01570 (2018).

  • Weng, L.-C., Bell, A., Weber, A. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys., DOI: 10.1039/C8CP01319E (2018).

  • Xaing, C., Walczak, K., Haber, J., Jones, R., Beeman, J., Guevarra, D., Karp, C., Liu, R., Shaner, M., Sun, K., West, W., Zhou, L. Chapter 11 Prototyping Development of Integrated Solar-driven Water-splitting Cells. Book Section in Integrated Solar Fuel Generators, The Royal Society of Chemistry, 387-453, DOI: 10.1039/9781788010313-00387 (2018).

  • Xiao, H., Shin, H., Goddard, W. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proceedings of the National Academy of Science, DOI: https://doi.org/10.1073/pnas.1722034115(2018).

  • Zhang, H., Goddard, W. A., Lu, Q., Cheng, M.-J. The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO2 reduction and hydrogen evolution. Phys. Chem. Chem. Phys, 20, 2549-2557, DOI: 10.1039/C7CP08153G (2018).

  • Zheng, X., Ji, Y., Tang, J., Wang, J., Liu, B., Steinruck, H.-G., Lim, K., Li, Y., Toney, M., Chan, K., Cui, Y. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nature Catalysis, DOI: 10.1038/s41929-018-0200-8 (2018).

  • Zhou, J.-J., Hellman, O., Bernardi, M. Electron-Phonon Scattering in the Presence of Soft Modes and Electron Mobility in SrTiO3 Perovskite from First Principles. Phys. Rev. Lett. 121, 226603, https://doi.org/10.1103/PhysRevLett.121.226603 (2018).

  • Zhou, L., Shinde, A., Guevarra, D., Toma, F., Stein, H., Gregoire, J., Haber, J. Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe-Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials, DOI: 10.1021/acsaem.8b01377 (2018).

  • Zhou, L., Shinde, A., Suram, S., Stein, H., Bauers, S., Zakutayev, A., DuChene, J., Liu, G., Peterson, E., Neaton, J., Gregoire, J. Bi-containing n-FeWO4 Thin Films Provide the Largest Photovoltage and Highest Stability for a sub-2 eV Band Gap Photoanode. ACS Energy Letters, DOI: 10.1021/acsenergylett.8b01514 (2018).

  • Zhou, L., Shinde, A., Montoya, J., Singh, A., Gul, S., Yano, J., Ye, Y., Crumlin, E., Richter, M., Cooper, J., Stein, H., Haber, J., Persson, K., Gregoire, J. Rutile alloys in the Mn-Sb-O system stabilize Mn+3 to enable oxygen evolution in strong acid. ACS Catalysis, DOI: 10.1021/acscatal.8b02689 (2018).

  • Zhou, X. and Xiang, C. Comparative Analysis of Solar-to-Fuel Conversion Efficiency: A Direct, One-Step Electrochemical CO2 Reduction Reactor versus a Two-Step, Cascade Electrochemical CO2 Reduction Reactor. ACS Energy Letters, DOI: 10.1021/acsenergylett.8b01077 (2018).

+ 2017

  • Bai, J., Bjorck, J., Xue, Y., Suram, S. K., Gregoire, J., Gomes, C. Relaxation Methods for Constrained Matrix Factorization Problems: Solving the Phase Mapping Problem in Materials Discovery. in Integration of AI and OR Techniques in Constraint Programming, Springer, ISBN: 978-3-319-59776-8 (2017).

  • Beckingham, B. S., Lynd, N. A., Miller, D. J. Monitoring Multicomponent Transport using In Situ ATR FTIR Spectroscopy. Journal of Membrane Science, DOI: https://doi.org/10.1016/j.memsci.2017.12.072 (2017).

  • Bouabadi, B., et al. Enhanced plasmon-mediated photo-assisted hydrogen evolution on silicon by interfacial modification. J. of Applied Electrochemistry, DOI: 10.1007/s10800-017-1055-4 (2017).

  • Brown, A. M. et al. Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. Physical Review Letters, 118 (8), 087401, DOI: 10.1103/PhysRevLett.118.087401 (2017).

  • Buabthong, P., Stasiewicz, N., Mitrovic, S., Lewis, N. S. Vanadium, niobium and tantalum by XPS. Surface Science Spectra, 24(2), DOI: http://dx.doi.org/10.1116/1.4998018 (2017).

  • Buss, H. G., Chan, S. Y., Lynd, N. A., and McCloskey, B. D. Nonaqueous Polyelectrolyte Solutions as Liquid Electrolytes with High Lithium Ion Transference Number and Conductivity. ACS Energy Letters, 2(2), 481-487, DOI: 10.1021/acsenergylett.6b00724 (2017).

  • Carter, B. M., Dobyns, B. M., Beckingham, B. S., Miller, D. J. Multicomponent transport of alcohols in an anion exchange membrane measured by in-situ ATR FTIR spectroscopy. Polymer, DOI: 10.1016/j.polymer.2017.06.070 (2017).

  • Chen, Y.-C., lu, A.-Y., Lu, P., Yang, X., Jiang, C.-M., Mariano, M., Kaehr, B., Lin, O., Taylor, A., Sharp, I. D., Li, L.-J., Chou, S. S., Tung, V. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced materials, DOI: 10.1002/adma.201703863 (2017).

  • Cheng, T., Xiao, H, and Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1612106114 (2017).

  • Cheng, T., Hung, Y., Xiao, H., and Goddard, W. A. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles. J. Phys. Chem. Lett., 8(14), 3317-3320, DOI: 10.1021/acs.jpclett.7b01335 (2017).

  • Cheng, T., Xiao, H., Goddard, W. A. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance. J. Am. Chem. Soc., 139(34), 11642-11645, DOI: 10.1021/jacs.7b03300 (2017).

  • Clark, E. L., Hahn, C., Jaramillo, T. F., Bell, A. B. Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b08607 (2017).

  • Contanda, P., Petzetakis, N., Jiang, X., Stone, G., and Balsara, N. P. Hydroxide-ion transport and stability of diblock copolymers with a polydiallyldimethyl ammonium hydroxide block. Polymer Chemistry, DOI: 10.1002/pola.28611 (2017).

  • Ding, F., Manby, F. R., and Miller, T. F. Embedded Mean-Field Theory with Block-Orthogonalized Partitioning. Journal of Chemical Theory and Computation, DOI: 10.1021/acs.jctc.6b01065 (2017).

  • Ding, F., Tsuchiya, T., Manby, F. R., and Miller, T. F. Linear-response time-dependent embedded mean-field theory. Journal of Chemical Theory and Computation, DOI: 10.1021/acs.jctc.7b00666 (2017).

  • Drisdell, W. S., Leppert, L., Sutter-Fella, C. M., Lang, Y., Li, Y., Ngo, Q., Wan, L., Gul, S., Kroll, T., Sokaras, D., Javey, A., Yano, J., Neaton, J., Toma, F., Prendergast, D., and Sharp, I. Determining Atomic-scale Structure and Composition of Organo-lead Halide Perovskites by Combining High-resolution X-ray Absorption Spectroscopy and First-principles Calculations. ACS Energy Letters, DOI: 10.1021/acsenergylett.7b00182 (2017).

  • Edri, E., Cooper, J. K., Sharp, I. D., Culdi, D. M., and Frei, H. Ultrafast Charge Transfer Between Light Absorber and Co3O4 Water Oxidation Catalyst Across Molecular Wires Embedded in Silica Membrane. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b01070 (2017).

  • Eilert, A. et al. Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction. J. Phys. Chem. Lett. 8(1), 285-290, DOI: 10.1021/acs.jpclett.6b02273 (2017).

  • Fan, Z., Xiao, H., Wang, Y., Zhao, Z., Lin, Z., Cheng, H.-C., Lee, S.-J., Wang, G., Feng, Z., Goddard, W., Hung, Y., Duan, X. Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. Cell Process, https://doi.org/10.1016/j.joule.2017.08.005 (2017).

  • Favaro, M., Valero-Vidal, C., Eichhorn, J., Toma, F. M., Rosse, P. N., Yano, J., Liu, Z., and Crumplin, E. J. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J. Mater. Chem. A, DOI: 10.1039/C7TA00409E (2017).

  • Favaro, M., Xiao, H., Cheng, T., Goddard, W. A., Yano, J., and Crumlin, E. J. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1701405114 (2017).

  • Favaro, M., Yang, J., Nappini, S., Magnano, E., Toma, F. M., Crumlin, E. J., Yano, J., and Sharp, I. D. Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc., DOI: 10.1021/jacs.7b03211 (2017).

  • Feaster, J. T., Jongerius, A. L., liu, X., Urushihara, M., Nitopi, S. A., Hahn, C., Chan, K., Norskov, J. K., and Jaramillo, T. F. Understanding the Influence of [EMIM]Cl on the Suppression of the Hydrogen Evolution Reaction on Transition Metal Electrodes. Langmuir, DOI: 10.1021/acs.langmuir.7b01170 (2017).

  • Gaulding, E. A., Liu, G., Chen, C. T., Lobbert, L., Li, A., Segev, G., Eichhorn, J., Aloni, S., Schwartzberg, A., Sharp, I. D., and Toma, F. Fabrication and optical characterization of polystyrene opal templates for the synthesis of scalable, nanoporous (photo)electrocatalytic materials by electrodeposition. J. Mater. Chem. A, DOI:10.1039/C7TA00512A (2017).

  • Green, M. L., Choi, C. L., Hattrick-Simpers, J. R., Joshi, A. M., Takeuchi, I., Barron, S. C., Campo, E., Chiang, T., Empadocles, S., Gregoire, J. M., Kusne, A. G., Martin, J., Mehta, A., Persson, K., Trautt, Z., Van Duren, J., and Zakutayev, A. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Applied Physics Review 4, 011105, DOI: 10.1063/1.4977487 (2017).

  • Gurudayal, G., Bullock, J., Sranko, D. F., Towle, C. M., Lum, Y., Hettick, M., Scott, M. C., Javey, A., Ager, J. W. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy and Environmental Science, DOI: 10.1039/C7EE01764B (2017).

  • Han, Z., Kortlever, R., Chen H.-Y., Peters, J. C., and Agapie, T. CO2 Reduction Selective for C≥2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Central Science, DOI: 10.1021/acscentsci.7b00180 (2017).

  • Hahn, C., Hatsukade, T., Kim, Y.-G., Vailionis, A., Baricuatro, J. H., Higgins, D. C., Nitopi, S. A., Soriaga, M. P., and Jaramillo, T. F. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1618935114 (2017).

  • Hess, L. H. et al. Probing interfacial energetics and charge transfer kinetics in semiconductor nanocomposites: New insights into heterostructured TiO2/BiVO4 photoanodes. Nano Energy, DOI: 10.1016/j.nanoen.2017.02.051 (2017).

  • Javier, A. et al. Electrocatalytic Reduction of CO2 on Cu and Au/W Electrode Surfaces: Empirical (DEMS) Confirmation of Computational (DFT) Predictions. ECS Transactions, 75(48), 1-17, DOI:10.1149/07548.0001ecst (2017).

  • Jhalani, V. A., Zhou, J.-J., and Bernardi, M. Ultrafast Hot Carrier Dynamics in GaN and Its Impact on the Efficiency Droop. NanoLetter, 17(8), 5012-5019, DOI: 10.1021/acs.nanolett.7b02212 (2017).

  • Jiang, C.-M., Farmand, M., Wu, C., Liu, Y.-S., Guo, J., Drisdell, W.S., Cooper, J. K., and Sharp, I. D. Electronic Structure, Optoelectronic Properties, and Photoelectrochemical Characteristics of γ-Cu3V2O8 Thin Films. Chemistry of Materials, DOI: 10.1021/acs.chemmater.7b00807 (2017).

  • Jiang, J., Huang, Z., Xiang, C., Poddar, R., Lewerenz, H.-J., Papadantonakis, K. M., Lewis, N. S., and Brunschwig, B. Nanoelectrical and Nanoelectrochemical Imaging of Pt/p-Si and Pt/p+-Si Electrodes. ChenSusuChem, DOI: 10.1002/cssc.201700893 (2017).

  • Jiang, K., Siahrostami, S., Akey, A. J., Li, Y., Lu, Z., Lattimer, J., Hu, Y., Stikes, C., Gangishetty, M., Chen, G., Zhou, Y., Hill, W., Cai, W.-B., Bell, D., Chan, K., Norskov, J. K., Cui, Y., Wang, H. Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. Chem., DOI: https://doi.org/10.1016/j.chempr.2017.09.014 (2017)

  • Jung, S. et al. Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell. Analytical Chemistry, 89(1), 581-585, DOI: 10.1021/acs.analchem.6b04228 (2017).

  • Kim, Y.-G. et al. Tuning the CO-Reduction Product Distribution by Structural Modification of the Cu Electrode Surface. ECS Transactions, 75(50), 87-97, DOI: 10.1149/07550.0087ecst (2017).

  • Kim, Y.-G., Javier, A., Baricuatro, J. H., Torelli, D., Cummins, K. D., Tsang, C. F., Hemminger, J. C., and Soriaga, M. P. Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS. Journal of Electroanalytical Chemistry, DOI 10.1016/j.jelechem.2017.04.037 (2017).

  • Kirk, C., Chen, L. D., Siahrostami, S., Karamad, M., Badjich, M., Voss, J., Norskov, J., Chan, K. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Central Science, 3(12), 1286-1293, DOI: 10.1021/acscentsci.7b00442 (2017).

  • Ledina, M. A., Bui, N., Liang, X., Kim, Y.-G., Jung, J., Perdue, B., Tsang, C., Drnec, J., Cerla, F., Soriaga, M. P., Reber, T. J., Steckey, J. L. Electrochemical Formation of Germanene: pH 4.5. Journal of Electrochemical Society, 164(7), D469-477, DOI: 10.1149/2.1221707jes (2017).

  • Lee, S. J. R., Miyamoto, K., Ding, F., Manby, F. R., and Miller, T. F. Density-based errors in mixed-basis mean-field electronic structure, with implications for embedding and QM/MM methods. Chemical Physics Letters, DOI: 10.1016/j.cplett.2017.04.059 (2017).

  • Liang, Y., Vinson, J., Pemmaraju, S., Drisdell, W. S., Shirley, E. L. and Prendergast, D. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory. Phys. Rev. Lett. 118, 096402, DOI: 10.1103/PhysRevLett.118.096402 (2017).

  • Lichterman, M. F., Richter, M. H., Brunschwig, B. S., Lewis, N. S., and Lewerenz, H. J. Operando X-ray Photoelectron Spectroscopic Investigations of the Electrochemical Double Layer at Ir/KOH(aq) Interfaces. J. of Electron Spectroscopy and Related Phenomena, DOI: 10.1016/j.elspec.2017.03.011 (2017).

  • Liu, X., Xiao, J., Peng, H., Hong, X., Chan, K., and Norskov, J. K. Understanding trends in electrochemical carbon dioxide reduction rates. Nature Communications, DOI: 10.1038/ncomms15438 (2017).

  • Lum, Y., Ager, J. W. Stability of residual oxides in oxide-derived Cu catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angewandte Chemie, DOI: 10.1002/anie.201710590 (2017).

  • Lum, Y., Yue, B., Lobaccaro, P., Bell, A. T., and Ager, J. W. Optimizing C-C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. J. Phys. Chem. C., DOI: 10.1021/acs.jpcc.7b03673 (2017).

  • Ma, J. and Wang, L.-W. The Nature of Electron Mobility in Hybrid Perovskite CH3NH3PbI3. Nano Letters, DOI: 10.1021/acs.nanolett.7b00832 (2017).

  • Maurya, S. K., Liu, Y., Das, C., Xu, X., Woods-Robinson, R., Ager, J. W., Kavaipatti, B. High figure-of-merit p-type transparent conductor, Cu alloyed ZnS via radio frequency magnetron sputtering. Journal of Physics D: Applied Physics, https://doi.org/10.1088/1361-6463/aa95b3 (2017).

  • Monroe, M. M., Lobaccaro, P., Lum, Y. and Ager, J. W. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation. J. J. Phys. D: Appl. Phys. 50 (2017) 154006, DOI: 10.1088/1361-6463/aa6359 (2017).

  • Moreno-Hernandez, I. A., MacFarland, C. A., Read, C. G., Brunschwig, B. S., Papadantonakis, K. M., and Lewis, N. Crystalline Nickel Manganese Antimonate as a Stable Water-Oxidation Catalyst in Aqueous 1.0 M H2SO4. Energy&Environmental Science, DOI: 10.1039/C7EE01486D (2017).

  • Naserifar, S., Brooks, D. J., Goddard, W. A., and Cvicek, V. Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids. The Journal of Chemical Physics 146, 124117, DOI: 10.1063/1.4978891 (2017).

  • Nellist, M. R. et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology, 28(9), 095711, https://doi.org/10.1088/1361-6528/aa5839 (2017).

  • Newhouse, P. F., Reyes-Lillo, S. E., Li, G., Zhou, L., Shinde, A., Guevarra, D., Suram, S. K., Soedarmadji, E., Richetr, M. H., Qu, X., Persson, K., Neaton, J. B., Gregoire, J. M. Discovery and Characterization of a Pourbaix Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chem. Mater, DOI: 10.1021/acs.chemmater.7b03591 (2017).

  • Omelchenko, S. T. et al. Excitonic Effects in Emerging Photovoltaic Materials: A Case Study in Cu2O. ACS Energy Letters, DOI: 10.1021/acsenergylett.6b00704 (2017).

  • Resasco, J., Chen, L. D., Clark, E., Tsai, C., Hahn, C., Jaramillo, T. F., Chan, K., and Bell, A. T. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b06765 (2017).

  • Saadi, F. H., Carim, A. I., Drisdell, W. S., Gul, S., Baricuatro, J. H., Yano, J., Soriaga, M. P., Lewis, N. S. Operando Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b07606 (2017).

  • Sharp, I. D. et al. Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition Metal Oxide Photoanodes. ACS Energy Letters, 2, 139-150, DOI: 10.1021/acsenergylett.6b00586 (2017).

  • Shinde, A., Suram, S. K., Yan, Q., Zhou, Q., Zhou, L., Singh, A. K., Persson, K. A., Neaton, J. B., Gregoire, J. M. Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. ACS Energy Letters, 2, 2307-2312, DOI: 10.1021/acsenergylett.7b00607 (2017).

  • Siahrostami, S., Jiang, K., Karamad, M., Chan, K., Wang, H., Norskov, J. Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2. ACS Sustainable Chemistry and Engineering, DOI: 10.1021/acssuschemeng.7b03031 (2017).

  • Singh, M. R., Xiang, C., and Lewis, N. Evaluation of Flow Schemes for Near-Neutral Electrolytes in Solar-Fuels Generators. Sustainable Energy and Fuels, DOI: 10.1039/C7SE00062F (2017).

  • Singh, M. R., Goodpaster, J. D., Weber, A. Z., Head-Gordon, M., Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1713164114 (2017).

  • Singh, A. K., Zhou, L., Shinde, A., Suram, S. K., Montoya, J. H., Winston, D., Gregoire, J. M., Persson, K. A. Electrochemical Stability of Metastable Materials. Chemistry of Materials, DOI: 10.1021/acs.chemmater.7b03980 (2017).

  • Soniat, M., Tasfaye, M., Brooks, D., Merinov, B., Goddard, W. A., Weber, A. Z., Houle, F. A. Predictive simulation of non-steady-state transport of gases through rubbery polymer membranes. Polymer, https://doi.org/10.1016/j.polymer.2017.11.055 (2017).

  • Soriaga, M. P., Baricuatro, J. H., Javier, A., A., Kim, Y.-G., Cummins, K. D., Tsang, C. F. Electrochemical Surface Science of CO2 Reduction at Well-Defined Cu Electrodes: Surface Characterization by Emersion, Ex Situ, In Situ, and Operando Methods. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, DOI: https://doi.org/10.1016/B978-0-12-409547-2.13643-1 (2017).

  • Stoerzinger, K., Favaro, M., Ross, P. N., Yano, J., Liu, Z., Hussain, Z., Crumlin, E. Probing the Surface of Platinum During the Hydrogen Evolution Reaction in Alkaline Electrolyte. The Journal of Physical Chemistry B, DOI: 10.1021/acs.jpcb.7b06953 (2017).

  • Sun, K., Moreno-Hernandez, I. A., Schmidt, W. C., Zhou, X., Crompton, J. C., Liu, R., Saadi, F. H., Chen, Y., Papadantonakis, K. M., and Lewis, N. A Comparison of the Chemical, Optical and Electrocatalytic Properties of Water-Oxidation Catalysts for Use in Integrated Solar-Fuels Generators. Energy Environmental Science, DOI: 10.1039/C6EE03563A (2017).

  • Sun, K., Cheng, T., Wu, L., Hu, Y., Zhou, J., Maclennan, A., Jiang, Z., Gao, Y., Goddard, W. A., Wang, Z. Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold–Iron Core–Shell Nanoparticles. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b09251 (2017).

  • Sundararaman, R., Goddard, W. A. and Aries, T. A. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry. The Journal of Chemical Physics, 146(11), 114104, DOI: 10.1063/1.4978411 (2017).

  • Sundararaman, R., Letchworth-Weaver, K., Schwarz, K. A., Gunceler, D., Ozhabes, Y., Arias, T. A. JDFTx: Software for joint density-functional theory. SoftwareX, 6, 278-284, https://doi.org/10.1016/j.softx.2017.10.006 (2017).

  • Suram, S. K. et al. Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System. ACS Combinatorial Science, 19(1), 37-46 DOI: 10.1021/acscombsci.6b00153 (2017).

  • Suram, S. K., Fackler, S. W., Zhou, L., N'Diaye, A. T., Drisdell, W. S., Yano, J., Gregoire, J. M. Combinatorial Discovery of Lanthanum–Tantalum Oxynitride Solar Light Absorbers with Dilute Nitrogen for Solar Fuel Applications. ACS Combinatorial Science, DOI: 10.1021/acscombsci.7b00143 (2017).

  • Sutter-Fella, C. M., Li, Y., Cefarin, N., Buckley, A., Ngo, Q. P., Javey, A., Sharp, I. D., Toma, F. M. Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium Lead Halide Perovskite Films. J. Vis. Exp. (127), e55404, DOI:10.3791/55404 (2017).

  • Taheri, P., Fahad, H. M., Tosun, M., Hettick, M., Kiriya, D., Chen, K., and Javey, A. Nanoscale Junction Formation by Gas-Phase Monolayer Doping. ACS Applied Materials and Interfaces, DOI: 10.1021/acsami.7b03974 (2017).

  • Tolstova, Y. et al. Polycrystalline Cu2O photovoltaic devices incorporating Zn(O,S) window layers. Solar Energy Materials and Solar Cells, 160, 340-345, DOI: 10.1016/j.solmat.2016.10.049 (2017).

  • Ulissi, Z. W., Tang, M. T., Xiao, J., Liu, X., Torelli, D. A., Karamad, M., Cummins, K., Hahn, C., Lewis, N. S., Jaramillo, T. F., Chan, K., Norskov, J. K. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction. ACS Catalysis, DOI: 10.1021/acscatal.7b01648 (2017).

  • Walczak, K. A., Segev, G., Larson, D. M., Beeman, J. W., Houle, F. A., and Sharp, I. D. Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions., Advanced Energy Materials, DOI: 10.1002/aenm.201602791 (2017).

  • Wan, Y., Karuturi, S. K., Samundsett, C., Bullock, J., Hettick, M., Yan, D., Peng, J., Narangari, P. R., Mokkapati, S., Tan, H. H., Jagadish, C., Javey, A., Cuevas, A. Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction. ACS Energy Letters, 3, 125-131, DOI: 10.1021/acsenergylett.7b01153 (2017).

  • Wiensch, J. D., John, J., Valazquez, J. M., Torelli, D. A., Pieterick, A. P., McDowell, M. T., Sun, K., Zhao, X., Brunschwig, B. S., Lewis, N. S. Comparative Study in Acidic and Alkaline Media of the Effects of pH and Crystallinity on the Hydrogen-Evolution Reaction on MoS2 and MoSe2. ACS Energy Letters, 2, 2234-2238, DOI: 10.1021/acsenergylett.7b00700 (2017).

  • Xiao, H., Goddard, W. A., Cheng, T., and Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1702405114 (2017).

  • Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Berstein, R., Bjorck, J., Longpre, L., Suram, S. K., van Dover, R. B., Gregoire, J., Gomes, C. P. Phase-Mapper: An AI Platform to Accelerate High Throughput Materials Discovery. Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications (IAAI-17)) (2017).

  • Yan, Q. et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1619940114 (2017).

  • Yang, J., Cooper, J. K., Toma, F. M., Walczak, K. A., Favaro, M., Beeman, J. W., Hess, L. H., Wang, C., Zhu, C., Gul, S., Yano, J., Kisielowski, C., Schwartzberg, A., Sharp, I. D. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials, 16, 335-341, DOI: 10.1038/nmat4794 (2017).

  • Ye, Q., Ziegler, M. S., Lakshmi, K. V., and Tilley, T. D. Titanium Imido Complexes by Displacement of –SiMe3 and C–H Bond Activation in a TiIII Amido Complex, Promoted by a Cyclic (Alkyl)(Amino) Carbene (cAAC). European Journal of Inorganic Chemistry, DOI: 10.1002/ejic.201700295 (2017).

  • Zheng, F., Pham, H. H., Wang, L.-W. The effects of c-Si/a-SiO2 interface atomic structure on its band alignment: an ab initio study. Physical Chemistry Chemical Physics, DOI: 10.1039/C7CP05879A (2017).

  • Zhou, X., Liu, R., Chen, Y., Verlage, E., Francis, S. A., Lewis, N. S., Xiang, C. Solar-Driven Reduction of 1 atm CO2 to Formate at 10% Energy-Conversion Efficiency by Use of a TiO2-Protected III-V Tandem Photoanode in Conjunction with a Bipolar Membrane and a Pd/C Cathode Electrocatalyst. ECS Transactions, 77(4), 31-41, DOI: 10.1149/07704.0031ecst (2017).

  • Ziegler, M. S., Lakshmi, K. V., and Tilley, T. D. Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide–Alkyne Cycloaddition. Journal of the American Chemical Society, 139(15), 5378-5386, DOI: 10.1021/jacs.6b13261 (2017).

+ 2016

  • Ager III, J. W. Photoelectrochemical Approach for Water Splitting. in Solar to Chemical Energy Conversion, Volume 32, 249-260 (2016).

  • Agnoli, S. and Favaro, M. Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. Journal of Materials Chemistry A, DOI: 10.1039/C5TA10599D (2016).

  • Ali-Löytty, H. et al. Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction. Journal of Physical Chemistry C 120(4), 2247–2253, DOI: 10.1021/acs.jpcc.5b10931 (2016).

  • Amani, M. et al. High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. ACS Nano, 10(7), 6535-6541, DOI: 10.1021/acsnano.6b03443 (2016).

  • Azarpira, A. et al. Sustained Water Oxidation by Direct Electrosynthesis of Ultrathin Organic Protection Films on Silicon. Advanced Energy Materials, DOI: 10.1002/aenm.201502314 (2016).

  • Baricuatro, J. H. et al. Influence of Redox-Inactive Cations on the Structure and Electrochemical Reactivity of Synthetic Birnessite, a Heterogeneous Analog for the Oxygen-Evolving Complex. The Journal of Physical Chemistry C, 120 (29), 15618–15631, DOI: 10.1021/acs.jpcc.5b07028 (2016).

  • Bernardi, M. & Grossman, J. C. Computer Calculations across Time and Length Scales in Photovoltaic Solar Cells. Energy&Environmental Science, DOI: 10.1039/C6EE01010E (2016).

  • Brown, A. M. et al. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. Physical Review B, 94, 075120, DOI: http://dx.doi.org/10.1103/PhysRevB.94.075120 (2016).

  • Bullock, J. et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nature Energy, DOI: 10.1038/nenergy.2015.31 (2016).

  • Bukowsky, C. R. et al. Photon and carrier management design for nonplanar thin-film copper indium gallium selenide photovoltaics. Solar Energy Materials and Solar Cells, DOI: http://dx.doi.org/10.1016/j.solmat.2016.11.008 (2016).

  • Buonsanti, R. Colloidal Chemistry to Advance Studies in Artificial Photosynthesis. CHIMIA International Journal for Chemistry, 70(11), 780-787, DOI: https://doi.org/10.2533/chimia.2016.780 (2016).

  • Chan, K. & Norskov, J. K. Potential Dependence of Electrochemical Barriers from ab Initio Calculations. The Journal of Physical Chemistry Letters, 7, 1686-1690, DOI: 10.1021/acs.jpclett.6b00382 (2016).

  • Chen, L. D., Urushihara, M., Chan, K. & Norskov, J. K. Electric Field Effects in Electrochemical CO2 Reduction. ACS Catalysis, 6, 7133-7139, DOI: 10.1021/acscatal.6b02299 (2016).

  • Chen, Y., Lewis, N. S. & Xiang, C. Modeling and Simulation of the Spatial and Light-Intensity Dependence of Product Distributions in an Integrated Photoelectrochemical CO2 Reduction System. ACS Energy Letters, DOI: 10.1021/acsenergylett.6b00134 (2016).

  • Cheng, C. et al. Influence of Constitution and Charge on Radical Pairing Interactions in Trisradical Tricationic Complexes. Journal of the American Chemical Society, DOI: 10.1021/jacs.6b04343 (2016).

  • Cheng, M.-J. et al. Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons. ACS Catalysis, DOI: 10.1021/acscatal.6b01393 (2016).

  • Cheng, T., Xiao, H. & Goddard, W. A. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. Journal of the American Chemical Society, 138(42), 13802-13805, DOI: 10.1021/jacs.6b08534 (2016).

  • Cooper, J. K. et al. Role of Hydrogen in Defining the n-Type Character of BiVO4 Photoanodes. Chemistry of Materials, DOI: 10.1021/acs.chemmater.6b01994 (2016).

  • Crowley, J. M., Tahir-Kheli, J. & Goddard III, W. A. Resolution of the Band Gap Prediction Problem for Materials Design. The Journal of Physical Chemistry Letters, 7, 1198-1203, DOI: 10.1021/acs.jpclett.5b02870 (2016).

  • Desai, S. B. et al. Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Advanced Materials, DOI: 10.1002/adma.201506171 (2016).

  • Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proceeding of the National Academy of Sciences, 113(8), 1993-1998, DOI: 10.1073/pnas.1600789113 (2016).

  • Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nature Communications, 7, 12695, DOI: 10.1038/ncomms12695 (2016).

  • Favaro, M. et al. An Operando Investigation of (Ni-Fe-Co-Ce)Ox System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, DOI: 10.1021/acscatal.6b03126 (2016) .

  • Fountaine, K. T., Cheng, W.-H., Bukowsky, C. R. & Atwater, H. A. Near-Unity Unselective Absorption in Sparse InP Nanowire Arrays. ACS Photonics, DOI: 10.1021/acsphotonics.6b00341 (2016).

  • Fountaine, K. T., Lewerenz, H. J. & Atwater, H. A. Efficiency limits for photoelectrochemical water-splitting. Nature Communications, DOI: 10.1038/ncomms13706 (2016).

  • Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. Identification of Possible Pathways for C–C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. The Journal of Physical Chemistry Letters, 7, 1471-1477, DOI: 10.1021/acs.jpclett.6b00358 (2016).

  • Hansen, H. A. et al. Bifunctional alloys for the electroreduction of CO2 and CO. Physical Chemistry Chemical Physics, 18, 9194-9201, DOI: 10.1039/C5CP07717F (2016).

  • Hattrick-Simpers, J. R., Gregoire, J. M & Kusne, G. Perspective: Composition–structure–property mapping in high-throughput experiments: Turning data into knowledge. APL Materials, 4, 053211, http://dx.doi.org/10.1063/1.4950995 (2016).

  • Hong, X. et al. How Doped MoS2 Breaks Transition-Metal Scaling Relations for CO2 Electrochemical Reduction. ACS Catalysis, 6, 4428-4437, DOI: 10.1021/acscatal.6b00619 (2016).

  • Hu, S. et al. Electrical, Photoelectrochemical, and Photoelectron Spectroscopic Investigation of the Interfacial Transport and Energetics of Amorphous TiO2/Si Heterojunctions. Journal of Physical Chemistry C, 120(6), 3117-3129, DOI: 10.1021/acs.jpcc.5b09121 (2016).

  • Huang, Z. et al. PeakForce Scanning Electrochemical Microscopy with Nanoelectrode Probes. Microscopy Today, DOI: 10.1017/18 S1551929516000882 (2016).

  • Jiang, S. et al. Pressure-Dependent Polymorphism and Band-Gap Tuning of Methylammonium Lead Iodide Perovskite. Angewandte Chemie, DOI: 10.1002/anie.201601788 (2016).

  • Johnson, S. I, Nielsen, R. J. & Goddard, W. A. Selectivity for HCO2– over H2 in the Electrochemical Catalytic Reduction of CO2 by (POCOP)IrH2. ACS Catalysis, 6, 6362-6371, DOI: 10.1021/acscatal.6b01755 (2016).

  • Kim, Y.-G. et al. Regulating the Product Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu Electrode Surface. Electrocatalysis, DOI: 10.1007/s12678-016-0314-1 (2016).

  • Kim, Y.-G. et al. Surface reconstruction of pure-Cu single-crystal electrodes under Co-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS. Journal of Electroanalytical Chemistry, http://dx.doi.org/10.1016/j.jelechem.2016.09.029 (2016).

  • Kiriya, D. et al. General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic Hydrogen Evolution Reaction. Nano Letters, 16(7), 4047-4053, DOI: 10.1021/acs.nanolett.6b00569 (2016).

  • Kisielowski, C. et al. Detecting structural variances of Co3O4 catalysts by controlling beam-induced sample alterations in the vacuum of a transmission electron microscope. Advanced Structural and Chemical Imaging, DOI: 10.1186/s40679-016-0027-9 (2016).

  • Kwon, Y. et al. CO2 electroreduction with high ethylene selectivity via nanostructuring of polycrystalline copper. ChemElectroChem, DOI: 10.1002/celc.201600068 (2016).

  • Leblebici, S. Y. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nature Energy, 1, 16093, DOI: 10.1038/nenergy.2016.93 (2016).

  • Lewerenz, H.-J. et al. Operando Analyses of Solar Fuels Light Absorbers and Catalysts. Electrochimica Acta, DOI: 10.1016/j.electacta.2016.06.006 (2016).

  • Lewis, N. S. Research opportunities to advance solar energy utilization. Science, 351 (6271), DOI: 10.1126/science.aad1920 (2016).

  • Li, Y. et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nature Communications, 7, 12446, DOI: 10.1038/ncomms12446 (2016).

  • Liberman-Martin, A. L. et al. Biaryl Reductive Elimination Is Dramatically Accelerated by Remote Lewis Acid Binding to a 2,2′-Bipyrimidyl–Platinum Complex: Evidence for a Bidentate Ligand Dissociation Mechanism. Organometallics, DOI: 10.1021/acs.organomet.5b01003 (2016).

  • Lichterman, M. F. et al. An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO2/Ni/Electrolyte Interfaces. Journal of the Electrochemical Society, 163(2), H139-H146, DOI: 10.1149/2.0861602jes (2016).

  • Liu, Y., Xiao, H. & Goddard, W. A. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects. Nano Lett., 16(5), pp 3335-3340, DOI: 10.1021/acs.nanolett.6b00964 (2016).

  • Liu, Y., et al. Undoped and Ni-Doped CoOx Surface Modification of Porous BiVO4 Photoelectrodes for Water Oxidation. The Journal Of Physical Chemistry, DOI: 10.1021/acs.jpcc.6b08654 (2016).

  • Lobaccaro, P. et al. Effects of Temperature and Gas-Liquid Mass Transfer on the Operation of Small Electrochemical Cells for the Quantitative Evaluation of CO2 Reduction Electrocatalysts. Phy. Chem. Chem Phys., DOI: 10.1039/C6CP05287H (2016).

  • Loiudice, A. et al. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. Angewandte Chemie Int. Ed., DOI: 10.1002/anie.201601582 (2016).

  • Luz, I. et al. Understanding the Formation Mechanism of Metal Nanocrystal@MOF-74 Hybrids. Chemistry of Materials, 28(11), 3839-3849, DOI: 10.1021/acs.chemmater.6b00880 (2016).

  • Meng, X. et al. Discovery of Fe2P-Type Ti(Zr/Hf)2O6 Photocatalysts toward Water Splitting. Chemistry of Materials, 28(5), 1335-1342, DOI: 10.1021/acs.chemmater.5b04256 (2016).

  • Montoya, J. H., Seitz, L. C., Chakthranont, P., Vojvodic, A., Jaramillo, T. F., and Norskov, J. K. Materials for solar fuels and chemicals. Nature Materials, 16, 70-81, DOI: 10.1038/nmat4778 (2016).

  • Mori, R. A. et al. Towards Characterization of Photo-Excited Electron Transfer and Catalysis in Natural and Artificial Systems Using XFELs. Faraday Discussions, DOI: 10.1039/C6FD00084C (2016).

  • Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics, DOI: 10.1515/nanoph-2016-0007 (2016).

  • Narang, P. et al. Cubic Nonlinearity Driven Up-Conversion in High-Field Plasmonic Hot Carrier Systems. Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.6b03463 (2016).

  • Newhouse, P. et al. Solar Fuels Photoanodes Prepared by Inkjet Printing of Copper Vanadates. Journal of Materials Chemistry A, DOI: 10.1039/C6TA01252C (2016).

  • Ogasawara, H., Kaya, S. &Nilsson, A. Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems. Topics in Catalysis, 59(5-7), pp 439-447, DOI: 10.1007/s11244-015-0525-3 (2016).

  • Panetier, J. A., Letko, C. S., Tilley, T. D. & Head-Gordon, M. Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction. Journal of Chemical Theory and Computation, 12(1), pp 223-230, DOI: 10.1021/acs.jctc.5b00968 (2016).

  • Pham, H. H., Cheng, M.-J., Frei, H. & Wang, L.-W. Surface Proton Hopping and Fast-Kinetics Pathway of Water Oxidation on Co3O4 (001) Surface. ACS Catalysis, 6(8), 5610-5617, DOI: 10.1021/acscatal.6b00713 (2016).

  • Ping, Y., Nielsen, R. J., and Goddard, W. A. The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO2 (110) Surface. Journal of the American Chemical Society, DOI: 10.1021/jacs.6b07557 (2016).

  • Ristova, M. M. et al. Electrochemical modification of the optical and electrical properties of Cd-rich NixCd1–xO alloys. Solar Energy materials and Solar Cells, DOI:10.1016/j.solmat.2015.12.008 (2016).

  • Roy, T. et al. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Applied Physics Letters, 108, 083111, http://dx.doi.org/10.1063/1.4942647 (2016).

  • Sachsenhauser, M. et al. Suppression of Photoanodic Surface Oxidation of N-type 6H-SiC Electrodes in Aqueous Electrolytes. Langmuir, DOI: 10.1021/acs.langmuir.5b04376 (2016).

  • Sachsenhauser, M., Sharp, I. D., Stutzmann, M. & Garrido, J. A. A. Surface State Mediated Electron Transfer Across the N-type SiC/Electrolyte Interface. The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b11569 (2016).

  • Sandberg, R. B., Montoya, J. H, Chan, K. & Norskov, J. K. CO-CO coupling on Cu facets: Coverage, strain and field effects. Surface Science, 654, 56-62, DOI: http://dx.doi.org/10.1016/j.susc.2016.08.006 (2016).

  • Sanoja, G. E., et al. Structure–Conductivity Relationships of Block Copolymer Membranes Based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing, Macromolecules, 49(6), 2216-2223, DOI: 10.1021/acs.macromol.5b02614 (2016).

  • Sathre, R. et al. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energy & Environmental Science, DOI: 10.1039/C5EE03040D (2016).

  • Schwarz, K. et al. Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges. Physical Chemistry Chemical Physics, 18, 16216-16223, DOI: 10.1039/C6CP01652A (2016).

  • Shaner, M. R. et al. Si/TiO2 Tandem-Junction Microwire Arrays for Unassisted Solar-DrivenWater Splitting. Journal of The Electrochemical Society, 163 (5) H261-H264, DOI: 10.1149/2.0141605jes (2016).

  • Shaner, M. R. et al. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & Environmental Science, DOI: 10.1039/C5EE02573G (2016).

  • Sheng, H. & Frei, H. Direct Observation by Rapid-Scan FT-IR Spectroscopy of Two-Electron-Reduced Intermediate of Tetraaza Catalyst [CoIIN4H(MeCN)]2+ Converting CO2 to CO. Journal of the American Chemical Society, 138(31), 9959-9967, DOI: 10.1021/jacs.6b05248 (2016).

  • Shi, C., Chan, K., Yoo, J. S. & Norskov, J. K. Barriers of Electrochemical CO2 Reduction on Transition Metals. Org. Process Res. Dev., DOI: 10.1021/acs.oprd.6b00103 (2016).

  • Shinde, A. et al. Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials and Interfaces, DOI: 10.1021/acsami.6b06714 (2016).

  • Shinde, A. et al. The role of the CeO2/BiVO4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes. Journal of Materials Chemistry A, DOI: 10.1039/C6TA04746G (2016).

  • Sieh, D. & Kubiak, C. P. A Series of Diamagnetic Pyridine Monoimine Rhenium Complexes with Different Degrees of Metal-to-Ligand Charge Transfer: Correlating 13C NMR Chemical Shifts with Bond Lengths in Redox-Active Ligands. Chemistry, A European Journal, DOI: 10.1002/chem.201600679 (2016).

  • Singh, M. R. et al. Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. Journal of the American Chemical Society, DOI: 10.1021/jacs.6b07612 (2016).

  • Stevens, J. C. & Weber, A. Z. A Computational Study of Optically Concentrating, Solar-Fuels Generators from Annual Thermal- and Fuel-Production Efficiency Perspectives. Journal of the Electrochemical Society, 163(7), H475-H484, DOI: 10.1149/2.0121607jes (2016).

  • Sun, K. et al. A Stabilized, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting Cell Incorporating Earth-Abundant Electrocatalysts with Steady-State pH Gradients and Product Separation Enabled by a Bipolar Membrane. Advanced Energy Materials, DOI: 10.1002/aenm.201600379 (2016).

  • Suram, S. K., Newhouse, P. F. and Gregoire, J. M. High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis. ACS Combinatorial Science, DOI: 10.1021/acscombsci.6b00053 (2016)

  • Suram, S. K. et al. High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships. ACS Combinatorial Science, DOI: 10.1021/acscombsci.6b00054 (2016).

  • Tolstova, Y., Omelchenko, S. T., Shing, A. M. & Atwater, H. A. Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering. Scientific Reports, 6, 23232, DOI: 10.1038/srep23232 (2016).

  • Toma, et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 7, 12012, DOI: 10.1038/ncomms12012 (2016).

  • Torelli, D. A. et al. Nickel–Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials. ACS Catalysis, 6, 2100-2104, DOI: 10.1021/acscatal.5b02888 (2016).

  • Ugeda, M. M. et al. Covalent Functionalization of GaP(110) Surfaces via a Staudinger-Type Reaction with Perfluorophenyl Azide. J. Phys. Chem. C, 120(46), 26448-26452, DOI: 10.1021/acs.jpcc.6b10691 (2016).

  • Wan, Y. et al. Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells. ACS Applied Materials and Interfaces, 8(23), 14671-14677, DOI: 10.1021/acsami.6b03599 (2016).

  • Wan, Y. et al. Conductive and Stable Magnesium Oxide Electron-Selective Contacts for Efficient Silicon Solar Cells. Advanced Energy Materials, DOI: 10.1002/aenm.201601863 (2016).

  • Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature Materials, DOI: 10.1038/nmat4589 (2016).

  • Wang, R. et al. Solar-Driven H2O2 Generation From H2O and O2 Using Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts. ChemSusChem, DOI: 10.1002/cssc.201600705 (2016).

  • Wiensch, J. D., John, J., Velazquez, D. A., Pieterick, A. P., McDowell, M. T., Sun, K., Zhao, X., Brunschwig, B. S., Lewis, N. S. Comparative Study in Acidic and Alkaline Media of the Effects of pH and Crystallinity on the Hydrogen-Evolution Reaction on MoS2 and MoSe2. ACS Energy Letters, 2, 2234-2238, DOI: 10.1021/acsenergylett.7b00700 (2017).

  • Woods-Robinson, R. et al. P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature. Advanced Electronic Materials, DOI: 10.1002/aelm.201500396 (2016)

  • Xiang, C., Papadantonakis, K. M. & Lewis, N. Principles and Implementations of Electrolysis Systems for Water Splitting. Materials Horizons, DOI: 10.1039/C6MH00016A (2016).

  • Xiang, C. et al. Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. Angewandte Chemie, DOI: 10.1002/anie.201510463 (2016).

  • Xiao, H., Cheng, T. and Goddard, W. A. Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111). Journal of the American Chemical Society, DOI: 10.1021/jacs.6b06846 (2016).

  • Xu, X. et al. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1–x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. Nano Letters, 16(3), 1925-1932, DOI: 10.1021/acs.nanolett.5b05124 (2016).

  • Yalamanchili, S., et al. Enhanced Absorption and <1% Spectrum-and-Angle-Averaged Reflection in Tapered Microwire Arrays. ACS Photonics, DOI: 10.1021/acsphotonics.6b00370 (2016).

  • Yang, J. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials, DOI: 10.1038/nmat4794 (2016).

  • Yang, X. et al. Dual Influence of Reduction Annealing on Diffused Hematite/FTO Junction for Enhanced Photoelectrochemical Water Oxidation. ACS Applied Materials and Interfaces, DOI: 10.1021/acsami.6b04213 (2016).

  • Zhou, H. et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 12765, DOI:10.1038/ncomms12765 (2016).

  • Zhou, J. -J. and Bernardi, M. Ab initio electron mobility and polar phonon scattering in GaAs. Physical Review B, 94, 201201(R), DOI: https://doi.org/10.1103/PhysRevB.94.201201 (2016).

  • Zhou, L. et al. Stability and Self-passivation of Copper Vanadate Photoanodes under Chemical, Electrochemical, and Photoelectrochemical Operation. Physical Chemistry Chemical Physics, DOI: 10.1039/C6CP00473C (2016).

  • Zhou, X. et al. 570 mV Photovoltage, Stabilized n-Si/CoOx Heterojunction Photoanodes Fabricated Using Atomic Layer Deposition. Energy & Environmental Science, DOI: 10.1039/C5EE03655K (2016).

  • Zhou X. et al. Solar-Driven Reduction of 1 atm CO2 to Formate at 10% Energy-Conversion Efficiency by Use of a TiO2-Protected III-V Tandem Photoanode in Conjunction with Bipolar Membrane and a Pd/C Cathode Electrocatalyst. ACS Energy Letters, DOI: 10.1021/acsenergylett.6b00317 (2016).

  • Zhu, Y. et al. Location of Co and Ni Promoter Atoms in Multi-layer MoS2 Nanocrystals for Hydrotreating Catalysis. Catalysis Today, 261, pp 75-81, DOI: 10.1016/j.cattod.2015.08.053 (2016).

  • Ziegler, M. S. et al. Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II) Complexes. Journal of the American Chemical Society, 138(20), 6484-6491, DOI: 10.1021/jacs.6b00802 (2016).

+ 2015

  • Ager III, J. W. et al. Experimental Demonstrations of Spontaneous, Solar-Driven Photoelectrochemical Water Splitting. Energy & Environmental Science, DOI: 10.1039/C5EE00457H (2015).

  • Ardo, S. et al. Unassisted solar-driven photoelectrosynthetic HI splitting using membrane-embedded Si microwire arrays. Energy & Environmental Science, DOI: 10.1039/C5EE00227C4 (2015).

  • Beckingham, B. S., Sanoja, G. E. & Lynd, N. A. Simple and Accurate Determination of Reactivity Ratios Using a Nonterminal Model of Chain Copolymerization. Macromolecules, 48(19), 6922-6930, DOI: 10.1021/acs.macromol.5b01631 (2015).

  • Berweger, S. et al. Microwave Near-Field Imaging of Two-Dimensional Semiconductors. Nano Letters 15, 1122-1127, DOI: 10.1021/nl504960u (2015).

  • Brown, A. M. et al. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nono, DOI: 10.1021/acsnano.5b06199 (2015)

  • Chen, L. et al. Mo-Doped BiVO4 Photoanodes Synthesized by Reactive Sputtering. ChemSusChem, DOI: 10.1002/cssc.201402984 (2015).

  • Chen, L. et al. P-type Transparent Conducting Oxide / n-type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation. Journal of the American Chemical Society, 2015, DOI: 10.1021/jacs.5b03536 (2015).

  • Chen, Y. et al. A Quantitative Analysis of the Efficiency of Solar-Driven Water-Splitting Device Designs Based on Tandem Photoabsorbers Patterned with Islands of Metallic Electrocatalysts. Energy & Environmental Science, DOI: 10.1039/C5EE00311C (2015).

  • Chen, Y., Lewis, N. S., & Xiang, C. Operational Constraints and Strategies for Systems to Effect the Sustainable, Solar-Driven Reduction of Atmospheric CO2. Energy & Environmental Science, DOI: 10.1039/C5EE02908B (2015).

  • Cheng, M.-J., Kwon, Y., Head-Gordon, M., & Bell, A. T. Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction. Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b05518 (2015).

  • Cheng, T., Xiao, H. & Goddard, W. A. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0. The Journal of Physical Chemistry Letters, 2015, 6, 4767-4773, DOI: 10.1021/acs.jpclett.5b02247(2015).

  • Cho, E. S. et al. Enhanced Water Vapor Blocking in Transparent Hybrid Polymer-Nanocrystal Films. Acs Macro Letters 4, 70-74, DOI: 10.1021/mz500765y (2015).

  • Clark, E. L., Singh, M. R., Kwon, Y. & Bell, A. T. Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO2. Analytical Chemistry 87(15), 8013-8020, DOI: 10.1021/acs.analchem.5b02080 (2015).

  • Cooper, J. K. et al. Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate. The Journal of Physical Chemistry C, DOI: 10.1021/jp512169w (2015).

  • Coridan, R. H. et al. Methods for Comparing the Performance of Energy-Conversion Systems for Use in Solar Fuels and Solar Electricity Generation. Energy & Environmental Science, DOI: 10.1039/C5EE00777A (2015).

  • Edri, E. & Frei, H. Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer. Journal of Physical Chemistry C, 119(51), pp. 28326-28334, DOI: 10.1021/acs.jpcc.5b09994 (2015).

  • Esposito, D. V. et al. Methods of photoelectrode characterization with high spatial and temporal resolution. Energy & Environmental Science 8, 2863-2885, DOI: 10.1039/C5EE00835B (2015).

  • Evans, C. M., Singh, M. R., Lynd, N. A. & Segalman, R. A. Improving the Gas Barrier Properties of Nafion via Thermal Annealing: Evidence for Diffusion through Hydrophilic Channels and Matrix. Macromolecules 48(10) 3303-3309, DOI: 10.1021/acs.macromol.5b00579 (2015).

  • Fabian, D. M. et al. Particle Suspension Reactors and Materials for Solar-Driven Water Splitting. Energy & Environmental Science, DOI: 10.1039/C5EE01434D (2015).

  • Faludi, J., Bayley, C., Bhogal, S. & Iribarne, M. Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototyping Journal 21(1) 14-33,DOI: 10.1108/rpj-07-2013-0067 (2015).

  • Fenwick, A. Q. & Luca, O. R. The Formation of CO by Thermal Decomposition of Formic Acid under Electrochemical Conditions of CO2 Reduction. Journal of Photochemistry and Photobiology B: Biology 152(A), 42-46, DOI: 10.1016/j.jphotobiol.2015.04.003 (2015).

  • Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society 137, 1305–1313, DOI: 10.1021/ja511559d (2015).

  • Fukushima, T., Drisdell, W., Yano, J. & Surendranath, Y. Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts. Journal of the American Chemical Society 137(34), 10926-10929, DOI: 10.1021/jacs.5b06737 (2015).

  • Guevarra, D. et al. Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO4. Energy & Environmental Science, DOI: 10.1039/C5EE03488D (2015).

  • Gul, S. et al. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Physical Chemistry Chemical Physics 17, 8901-8912, DOI: 10.1039/C5CP01023C (2015).

  • Haber, J. A., Anzenburg, E., Yano, J., Kisielowski, C. & Gregoire, J. M. Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, DOI: 10.1002/aenm.201402307 (2015).

  • Han, L. H. et al. Gradient dopant profiling and spectral utilization of monolithic thin-film silicon photoelectrochemical tandem devices for solar water splitting. Journal of Materials Chemistry A 3(8) 4155-4162, DOI: 10.1039/c4ta05523c (2015).

  • Helms, B. A. et al. Colloidal Nanocrystal Frameworks. Advanced Materials, DOI: 10.1002/adma.201500127 (2015).

  • Helveg, S. et al. Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity. Micron 68, 176-185, DOI: 10.1016/j.micron.2014.07.009 (2015).

  • Hettick, M. et al. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes. J. Phys. Chem. Lett. 6. 2177-2182, DOI: 10.1021/acs.jpclett.5b00744 (2015).

  • Hu, S. et al. Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators. Journal of Physical Chemistrty C, 119(43), pp 24201-24228, DOI: 10.1021/acs.jpcc.5b05976 (2015).

  • Huang, Y., Nielsen, R. J., Goddard, W. A. & Soriaga, M. P. The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS2. Journal of the American Chemical Society,DOI: 10.1021/jacs.5b03329 (2015).

  • Huang, Z. et al. Atomic Force Microscopy for Solar Fuels Research: An Introductory Review. Energy and Environment Focus 4(4), 260-277, DOI: 10.1166/eef.2015.1180 (2015).

  • Javier, A. et al. A DEMS Study of the Reduction of CO2, CO, and HCHO Pre-Adsorbed on Cu Electrodes: Empirical Inferences on the CO2RR Mechanism. Electrocatalysis, 1-5, DOI: 10.1007/s12678-015-0246-1 (2015).

  • Javier, A. et al. Overlayer Au-on-W Near-Surface Alloy for the Selective Electrochemical Reduction of CO2to Methanol: Empirical (DEMS) Corroboration of a Computational (DFT) Prediction. Electrocatalysis, DOI: 10.1007/s12678-015-0276-8 (2015).

  • Jiang, Y. et al. The evolution of cyclopropenium ions into functional polyelectrolytes. Nature Communications, 6, 5950, DOI: 10.1038/ncomms6950 (2015).

  • Jones, R. J. R. et al. Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts. ACS Combinatorial Science 17, 71-75, DOI: 10.1021/co500148p (2015).

  • Jung, S. et al. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. Journal of Materials Chemistry A, DOI: 10.1039/C5TA07586F (2015).

  • Jurss, J. W. et al. Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water. Chemical Science, 6, 4954-4972, DOI: 10.1039/C5SC01414J (2015).

  • Kisielowski, C. et al. Instrumental requirements for the detection of electron beam-induced object excitations at the single atom level in high-resolution transmission electron microscopy. Micron 68, 186-193, DOI: 10.1016/j.micron.2014.07.010 (2015).

  • Klaus, S. et al. Experimental and Computational Evidence of Highly-Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media. ChemElectroChem, DOI: 10.1002/celc.201500364 (2015).

  • Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L. & Bell, A. T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b00105 (2015).

  • Klaus, S., Louie, M. W., Trotochaud, L. & Bell, A. T. Role of Catalyst Preparation on the Electrocatalytic Activity of Ni1−xFexOOH for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C 119(32), 18303-18316, DOI: 10.1021/acs.jpcc.5b04776 (2015).

  • Kuang, Y. et al. Enhancement of the performance of GaP solar cells by embedded In(N)P quantum dots. Nano Energy 15, 782-788, DOI: 10.1016/j.nanoen.2015.06.003 (2015).

  • Lam, Y. C., Nielsen, R. J., Gray, H. B. & Goddard, W. A. A Mn Bipyrimidine Catalyst Predicted To Reduce CO2 at Lower Overpotential. ACS Catalysis 5(4) 2521-2528, DOI: 10.1021/cs501963v (2015).

  • Li, Y. et al. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing. The Journal of Physical Chemistry Letters, DOI: 10.1021/jz502720a (2015).

  • Li, Y. P. et al. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-Performance Electrocatalytic Hydrogen Evolution. Acs Catalysis 5, 448-455, DOI: 10.1021/cs501635v (2015).

  • Lichterman, M. F. et al. Direct Observation of the Energetics at a Semiconductor/Liquid Junction byOperando X-ray Photoelectron Spectroscopy. Energy Environ. Sci., 2015, DOI: 10.1039/C5EE01014D(2015).

  • Lichterman, M. F. et al. Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation. Catalysis Today, DOI: 10.1016/j.cattod.2015.08.017 (2015)

  • Lilio, A. M. et al. Incorporation of pendant bases into Rh(diphosphine)2 complexes: Synthesis, thermodynamic studies, and catalytic CO2 hydrogenation activity of [Rh(P2N2)2]+ complexes. Journal of the American Chemical Society, DOI: 10.1021/jacs.5b04291 (2015).

  • Lin, Y. et al. Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes. Journal of Physical Chemistry C 119(5), 2308-2313, DOI: 10.1021/jp5107313 (2015).

  • Liu, R. et al. Tuning redox potentials of CO2 reduction catalysts for carbon photofixation by Si nanowires. Science China Materials, 58(7), 515-520, DOI: 10.1007/s40843-015-0068-8 (2015).

  • Liu, R. A. et al. Low Temperature Synthesis of Electrochemical Active Pt Nanoparticles and Thin Films by Atomic Layer Deposition on Si(111) and Glassy Carbon Surfaces. Thin Solid Films, DOI: 10.1016/j.tsf.2015.04.018 (2015).

  • Liu, W. & Tilley, T. D. Sterically Controlled Functionalization of Carbon Surfaces with −C6H4CH2X (X = OSO2Me or N3) Groups for Surface Attachment of Redox-Active Molecules. Langmuir, DOI: 10.1021/la503796z (2015).

  • Loiudice, A. et al. Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals. Nano Letters (2015), DOI: 10.1021/acs.nanolett.5b03871(2015).

  • Loiudice, A. et al. Bandgap Tunability in Sb-Alloyed BiVO4 Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications. Advanced Materials, DOI: 10.1002/adma.201502361 (2015).

  • Luca, O. R. et al. Catalysis by electrons and holes: formal potential scales and preparative organic electrochemistry. Organic Chemistry Frontiers, DOI: 10.1039/C5QO00075K (2015).

  • Luca, O. R. & Fenwick, A. Q. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2 – The reduction chemistry of carboxylic acids and derivatives as bent CO2surrogates. Journal of Photochemistry and Photobiology B: Biology 152(A), 26-42, DOI: 10.1016/j.jphotobiol.2015.04.015 (2015).

  • Luca, O. R., McCrory, C. C. L., Dalleska, N. F. & Koval, C. A. The Selective Electrochemical Conversion of Preactivated CO2 to Methane. Journal of The Electrochemical Society, 162(7), H473-476, DOI: 10.1149/2.0371507jes (2015).

  • Lucht, K. P. & Mendoza-Cortes, J. L. Birnessite: A Layered Manganese Oxide To Capture Sunlight for Water-Splitting Catalysis. The Journal of Physical Chemistry C 119 (40), 22838-22846, DOI: 10.1021/acs.jpcc.5b07860 (2015).

  • Lum, Y. et al. Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity. ACS Catalysis, DOI: 10.1021/acscatal.5b02399 (2015)

  • Lynch, J. et al. Substitutional or Interstitial Site-Selective Nitrogen Doping in TiO2 Nanostructures. The Journal of Physical Chemistry C, 119(13), 7443-7452, DOI: 10.1021/jp512775s (2015).

  • Ma, J., Wang, Z. & Wang, L.-W. Interplay between plasmon and single-particle excitations in a metal nanocluster. Nature Communications, DOI: 10.1038/ncomms10107 (2015).

  • Ma, J. & Wang, L. W. Nanoscale Charge Localization Induced by Random Orientations of Organic Molecules in Hybrid Perovskite CH3NH3PbI3. Nano Letters 15, 248-253, DOI: 10.1021/nl503494y (2015).

  • Malacrida, P. et al. Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 28121-28128, DOI: 10.1039/C5CP00283D (2015).

  • May, M. M. et al. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nature Communications, DOI: 10.1038/ncomms9286 (2015).

  • McCrory, C. C. L. et al. Benchmarking HER and OER Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society, DOI: 10.1021/ja510442p (2015).

  • McDowell, M. T. et al. The Influence of Structure and Processing on the Behavior of TiO2 Protective Layers for Stabilization of n-Si/TiO2/Ni Photoanodes for Water Oxidation. ACS Applied Materials & Interfaces,DOI: 10.1021/acsami.5b00379 (2015).

  • Mitrovic, S. et al. Colorimetric Screening for High-Throughput Discovery of Light Absorbers. ACS Combinatorial Science, DOI: 10.1021/co500151u (2015).

  • Mitrovic, S. et al. High-throughput on-the-fly scanning ultraviolet-visible dual-sphere spectrometer. Review of Scientific Instruments 86, 5, DOI: 10.1063/1.4905365 (2015).

  • Nielander, A. C., Shaner, M., Papadantonakis, K. M., Francis, S. A. & Lewis, N. A Taxonomy for Solar Fuels Generators. Energy & Environmental Science, DOI: 10.1039/C4EE02251C (2015).

  • Niu, K.-Y. et al. Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser–Chemical Route. Nano Letters, DOI: 10.1021/acs.nanolett.5b00026 (2015).

  • Petzetakis, N. et al. Membranes with artificial free-volume for biofuel production. Nature Communications 6, 7529, DOI: 10.1038/ncomms8529 (2015).

  • Pham, H. H. & Wang, L. W. Electronic structures and current conductivities of B, C, N and F defects in amorphous titanium dioxide. Physical Chemistry Chemical Physics 17(17) 11908-11913, DOI: 10.1039/c5cp00890e (2015).

  • Pham, H. H. & Wang, L. W. Oxygen vacancy and hole conduction in amorphous TiO2. Physical Chemistry Chemical Physics 17(1), 541-550, DOI: 10.1039/c4cp04209c (2015).

  • Pham, H. H., Barkema, G. T. & Wang, L.-W. DFT+U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS, Physical Chemistry Chemical Physics, 17, 26270-26276, DOI: 10.1039/C5CP04623H (2015).

  • Ping, Y., Galli, G. & Goddard, W. A. Electronic Structure of IrO2: The Role of the Metal d Orbitals. The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b00861 (2015).

  • Ping, Y., Goddard, W. A. & Galli, G. A. Energetics and solvation effects at the photoanode-catalyst interface: Ohmic contact versus Schottky barrier. Journal of the American Chemical Society, DOI: 10.1021/jacs.5b00798 (2015).

  • Ping, Y., Sundararaman, R. & Goddard, W. A. Solvation effects on the band edge positions of photocatalysts from first principles. Physical Chemistry Chemical Physics, DOI: 10.1039/C5CP05740J(2015).

  • Plymale, N. T., Kim, Y.-G., Soriaga, M. P., Brunschwig, B. S. & Lewis, N. S. Synthesis, Characterization, and Reactivity of Ethynyl- and Propynyl-Terminated Si(111) Surfaces. The Journal of Physical Chemistry C,DOI: 10.1021/acs.jpcc.5b05028 (2015).

  • Popczun, E. et al. Highly Branched Cobalt Phosphide Nanostructures for Hydrogen-Evolution Electrocatalysis. Journal of Materials Chemistry A, DOI: 10.1039/C4TA06642A (2015).

  • Schwarz, K. A. et al. Formic acid oxidation on platinum: a simple mechanistic study. Physical Chemistry Chemical Physics, 17, 20805-20813, DOI: 10.1039/C5CP03045E (2015).

  • Shaner, M. R., Hu, S., Sun, K. & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O-2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy & Environmental Science 8, 203-207, DOI: 10.1039/c4ee03012e (2015).

  • Shaner, M. R., McKone, J. R., Gray, H. B. & Lewis, N. S. Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution. Energy & Environmental Science, DOI: 10.1039/C5EE01076D (2015).

  • Shinde, A. et al. High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis, DOI: 10.1007/s12678-014-0237-7 (2015).

  • Shinde, A., Guevarra, D., Haber, J. A., Jin, J. & Gregoire, J. M. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements. J. Mater. Res., DOI: 10.1557/jmr.2014.296 (2015).

  • Sieh, D., Lacy, D. C., Peters, J. C. & Kubiak, C. P. Reduction of CO2 by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal–Ligand Binding of CO2. Chemistry – A European Journal, DOI: 10.1002/chem.201500463 (2015).

  • Singh, M. R. & Bell, A. T. Design of an artificial photosynthetic system for production of alcohols in high concentration from CO2. Energy & Environmental Science, DOI: 10.1039/C5EE02783G (2015).

  • Singh, M. R., Clark, E. L. & Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Physical Chemistry Chemical Physics 17, 18924-18936, DOI: 10.1039/C5CP03283K (2015).

  • Singh, M. R., Clark, E. L. & Bell, A. T. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels. PNAS (2015), DOI: 10.1073/pnas.1519212112 (2015).

  • Singh, M. R., Papadantonakis, K. M., Xiang, C. & Lewis, N. S. An Electrochemical Engineering Assessment of the Operational Conditions and Constraints for Solar-Driven Water-Splitting Systems at Near-Neutral pH. Energy & Environmental Science, DOI: 10.1039/C5EE01721A (2015).

  • Smith, W. A. et al. Interfacial Band-Edge Energetics for Solar Fuels Production. Energy & Environmental Science, DOI: 10.1039/C5EE01822F (2015).

  • Soriaga, M. P. et al. Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis. Surface Science 631, 285-294, DOI: 10.1016/j.susc.2014.06.028 (2015).

  • Sun, J. et al. Low-Temperature Solution-Phase Growth of Silicon and Silicon-Containing Alloy Nanowires. Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b08289 (2015).

  • Sun, K. et al. Sputtered NiOx Films for Stabilization of p+n-InP Photoanodes for Solar-Driven Water Oxidation. Advanced Energy Materials, DOI: 10.1002/aenm.201402276 (2015).

  • Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. PNAS 112, 12, 3612–3617, DOI: 10.1073/pnas.1423034112(2015).

  • Sun, K. et al. Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes. The Journal of Physical Chemistry Letters 6, 592-598, DOI: 10.1021/jz5026195 (2015).

  • Sundararaman, R. & Goddard, W. A. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. The Journal of Chemical Physics 142, 064107, DOI: 10.1063/1.4907731(2015).

  • Suram, S. K. et al. Combinatorial thin film composition mapping using three dimensional deposition profiles. Review of Scientific Instruments 86, 033904-1–6, DOI: 10.1063/1.4914466 (2015).

  • Suram, S. K., Haber, J. A., Jin, J. & Gregoire, J. M. Generating Information Rich High-Throughput Experimental Materials Genomes using Functional Clustering via Multi-Tree Genetic Programming and Information Theory. ACS Combinatorial Science, DOI: 10.1021/co5001579 (2015).

  • Suseno, S. et al. Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts. Chemistry: a European Journal 21, 13420-13430, DOI: 10.1002/chem.201501104 (2015).

  • Sutter-Fella, C. M. et al. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites. Nano Letters, DOI: 10.1021/acs.nanolett.5b04884 (2015).

  • Swierk, J. R. et al. An Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (oxy)hydroxide Catalysts. Journal of Physical Chemistry C, 2015, DOI: 10.1021/acs.jpcc.5b05861(2015).

  • Van Allsburg, K., Anzenberg, E., Drisdell, W., Yano, J. & Tilley, T. D. Oxygen-Atom Transfer Chemistry and Thermolytic Properties of a Di-tert-butylphosphate-Ligated Mn4O4 Cubane. Chemistry - A European Journal, DOI: 10.1002/chem.201406114 (2015).

  • Van Dyck, D., Lobato, I., Chen, F. R. & Kisielowski, C. Do you believe that atoms stay in place when you observe them in HREM? Micron 68, 158-163, DOI: 10.1016/j.micron.2014.09.003 (2015).

  • Velazquez, J. M. et al. A Scanning Probe Investigation of the Role of Surface Motifs in the Behavior of p–WSe2 Photocathodes. Energy & Environmental Science, DOI: 10.1039/C5EE02530C (2015).

  • Verlage, E. et al. A Monolithically Integrated, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting System Based on Active, Stable Earth-Abundant Electrocatalysts in Conjunction with Tandem III-V Light Absorbers Protected by Amorphous TiO2 Films. Energy & Environmental Science, DOI: 10.1039/C5EE01786F (2015).

  • Walczak, K. et al. Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System. ChemSusChem 8, 544-551, DOI: 10.1002/cssc.201402896 (2015).

  • Wong, K. T. et al. Synthesis and Characterization of Atomically Flat Methyl-Terminated Ge(111) Surfaces. Journal of the American Chemical Society DOI: 10.1021/jacs.5b03339 (2015).

  • Xiao, H. et al. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). Journal of American Chemical Society, DOI: 10.1021/jacs.5b11390 (2015).

  • Yan, Q. et al. Mn2V2O7: An Earth Abundant Light Absorber for Solar Water Splitting. Advanced Energy Materials, DOI: 10.1002/aenm.201401840 (2015).

  • Yang, X. G. et al. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Research 8, 56-81, DOI: 10.1007/s12274-014-0645-2 (2015).

  • You, B. et al. Bimetal–Organic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction. ACS Catalysis, 5(12), pp. 7068-7076, DOI: 10.1021/acscatal.5b02325 (2015).

  • Yu, J. et al. First-principles study of electronic structure and photocatalytic properties of MnNiO3 as an alkaline oxygen-evolution photocatalyst. Chemical Communications 51, 2867-2870, DOI: 10.1039/C4CC08111K (2015).

  • Zee, D. Z. et al. Metal–Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen. Accounts of Chemical Research, 48 (7), 2027–2036, DOI: 10.1021/acs.accounts.5b00082(2015).

  • Zhang, M. et al. Visible Light Sensitized CO2 Activation by the Tetraaza [CoIIN4H(MeCN)]2+ Complex Investigated by FT-IR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry C, DOI: 10.1021/jp5127738 (2015).

  • Zhou, L. et al. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides. Journal of Materials Research, DOI: 10.1557/jmr.2015.140 (2015).

  • Zhou, L. et al. High Throughput Discovery of Solar Fuels Photoanodes in the CuO−V2O5 System. Advanced Energy Materials, DOI: 10.1002/aenm.201500968 (2015).

  • Zhou, X. et al. Interface Engineering of the Photoelectrochemical Performance of Ni-Oxide-Coated n-Si Photoanodes by Atomic-Layer Deposition of Ultrathin Films of Cobalt Oxide. Energy & Environmental Science, DOI: 10.1039/C5EE01687H (2015).

+ 2014

  • Alarcon-Llado, E. et al. BiVO4 thin film photoanodes grown by chemical vapor deposition. Physical Chemistry Chemical Physics 16, 1651-1657, DOI: 10.1039/c3cp53904k (2014).

  • Antunez, P. D. et al. Low Temperature Solution-Phase Deposition of SnS Thin Films. Chemistry of Materials 26, 5444-5446, DOI: 10.1021/cm503124u (2014).

  • Baricuatro, J. et al. Heterogenization of a Water-Insoluble Molecular Complex for Catalysis of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions. Electrocatalysis, 1-3, DOI: 10.1007/s12678-014-0200-7 (2014).

  • Baricuatro, J. H. et al. Structure and composition of Cu(hkl) surfaces exposed to O-2 and emersed from alkaline solutions: Prelude to UHV-EC studies of CO2 reduction at well-defined copper catalysts. Journal of Electroanalytical Chemistry 716, 101-105, DOI: 10.1016/j.jelechem.2013.10.001 (2014).

  • Battaglia, C. et al. Hole Selective MoOx Contact for Silicon Solar Cells. Nano Letters 14, 967-971, DOI: 10.1021/nl404389u (2014).

  • Berger, A. & Newman, J. An Integrated 1-Dimensional Model of a Photoelectrochemical Cell for Water Splitting. Journal of the Electrochemical Society 161, E3328-E3340, DOI: 10.1149/2.035408jes (2014).

  • Berger, A., Segalman, R. A. & Newman, J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell. Energy & Environmental Science 7, 1468-1476, DOI: 10.1039/c3ee43807d (2014).

  • Bruce, J. P. et al. Measurement of the Electrical Resistance of n-Type Si Microwire/p-Type Conducting Polymer Junctions for Use in Artificial Photosynthesis. Journal of Physical Chemistry C 118, 27742-27748,DOI: 10.1021/jp509211k (2014).

  • Cai, S. L. et al. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chemical Science 5, 4693-4700, DOI: 10.1039/c4sc02593h (2014).

  • Callejas, J. F. et al. Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. Acs Nano 8, 11101-11107, DOI: 10.1021/nn5048553 (2014).

  • Carim, A. I., Saadi, F. H., Soriaga, M. P. & Lewis, N. S. Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. Journal of Materials Chemistry A 2, 13835-13839,DOI: 10.1039/c4ta02611j (2014).

  • Cedeno, D. et al. Using Molecular Design to Control the Performance of Hydrogen-Producing Polymer-Brush-Modified Photocathodes. Journal of Physical Chemistry Letters 5, 3222-3226, DOI: 10.1021/jz5016394 (2014).

  • Chen, S. Y. & Wang, L. W. Double-hole-induced oxygen dimerization in transition metal oxides. Physical Review B 89, 6, DOI: 10.1103/PhysRevB.89.014109 (2014).

  • Chen, S. Y., Narang, P., Atwater, H. A. & Wang, L. W. Phase Stability and Defect Physics of a Ternary ZnSnN2 Semiconductor: First Principles Insights. Advanced Materials 26, 311-315, DOI: 10.1002/adma.201302727 (2014).

  • Chen, Y. K., Xiang, C. X., Hu, S. & Lewis, N. S. Modeling the Performance of an Integrated Photoelectrolysis System with 10 x Solar Concentrators. Journal of the Electrochemical Society 161, F1101-F1110, DOI: 10.1149/2.0751410jes (2014).

  • Chen, Y., Hu, S., Xiang, C. & Lewis, N. A Sensitivity Analysis to Assess the Relative Importance of Improvements in Electrocatalysts, Light Absorbers, and System Geometry on the Efficiency of Solar-Fuels Generators. Energy & Environmental Science, DOI: 10.1039/C4EE02314E (2014).

  • Cheng, M. J., Head-Gordon, M. & Bell, A. T. How to Chemically Tailor Metal-Porphyrin-Like Active Sites on Carbon Nanotubes and Graphene for Minimal Overpotential in the Electrochemical Oxygen Evolution and Oxygen Reduction Reactions. Journal of Physical Chemistry C 118, 29482-29491, DOI: 10.1021/jp507638v (2014).

  • Cooper, J. K. et al. Electronic Structure of Monoclinic BiVO4. Chemistry of Materials 26, 5365-5373, DOI: 10.1021/cm5025074 (2014).

  • Cotanda, P., Sudre, G., Modestino, M. A., Chen, X. C. & Balsara, N. P. High Anion Conductivity and Low Water Uptake of Phosphonium Containing Diblock Copolymer Membranes. Macromolecules 47, 7540-7547, DOI: 10.1021/ma501744w (2014).

  • Fenwick, A. Q., Gregoire, J. M. & Luca, O. R. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device. Journal of Photochemistry and Photobiology B: Biology, DOI: 10.1016/j.jphotobiol.2014.12.019 (2014).

  • Fong, H. & Peters, J. Hydricity of an Fe−H Species and Catalytic CO2 Hydrogenation. Inorganic Chemistry, DOI: 10.101021/9c502508p (2014).

  • Fountaine, K. T. & Atwater, H. A. Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si vertical bar WO3 microwires. Optics Express 22, A1453-A1461, DOI: 10.1364/oe.22.0a1453 (2014).

  • Fountaine, K. T., Kendall, C. G. & Atwater, H. A. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. Optics Express 22, A930-A940,DOI: 10.1364/oe.22.00a930 (2014).

  • Fountaine, K. T., Lewerenz, H. J. & Atwater, H. A. Interplay of light transmission and catalytic exchange current in photoelectrochemical systems. Applied Physics Letters 105, 3, DOI: 10.1063/1.4900612(2014).

  • Fountaine, K. T., Whitney, W. S. & Atwater, H. A. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes. Journal of Applied Physics 116, 6, DOI: 10.1063/1.4898758 (2014).

  • Grauer, D. C. & Alivisatos, A. P. Ligand Dissociation Mediated Charge Transfer Observed at Colloidal W18O49 Nanoparticle Interfaces. Langmuir 30, 2325-2328, DOI: 10.1021/la404019v (2014).

  • Gregoire, J. M. et al. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. Journal of Synchrotron Radiation 21, 1262-1268, DOI: 10.1107/s1600577514016488 (2014).

  • Haber, J. A. et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy & Environmental Science 7, 682-688, DOI: 10.1039/c3ee43683g (2014).

  • Haber, J. A. et al. High-Throughput Mapping of the Electrochemical Properties of (Ni-Fe-Co-Ce)O-x Oxygen-Evolution Catalysts. Chemelectrochem 1, 524-528, DOI: 10.1002/celc.201300229 (2014).

  • Haber, J. A., Guevarra, D., Jung, S. H., Jin, J. & Gregoire, J. M. Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni- La- Co- Ce Oxide Composition Space. Chemelectrochem 1, 1613-1617, DOI: 10.1002/celc.201402149 (2014).

  • Han, L. H. et al. Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells. Chemsuschem 7, 2832-2838, DOI: 10.1002/cssc.201402456 (2014).

  • Hsieh, C. H. et al. Redox active iron nitrosyl units in proton reduction electrocatalysis. Nature Communications 5, 8, DOI: 10.1038/ncomms4684 (2014).

  • Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005-1009, DOI: 10.1126/science.1251428 (2014).

  • Huang, Z. et al. Comparison between the measured and modeled hydrogen-evolution activity of Ni- or Pt-coated silicon photocathodes. International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2013.12.162 (2014).

  • Huang, Z., Xiang, C. & Lewis, N. S. Two 1 stories from the ISACS 12 conference: solarfuel devices and catalyst identification (editorial). EES, DOI: 10.1039/c3ee90043f (2014).

  • Javier, A. et al. C-H activation and metalation at electrode surfaces: 2,3-dimethyl-1,4-dihydroxybenzene on Pd(pc) and Pd(111) studied by TLE, HREELS and DFT. Dalton Transactions 43, 14798-14805, DOI: 10.1039/c4dt02137a (2014).

  • Jeon, J. et al. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters 5, 4285-4290, DOI: 10.1021/jz502197b (2014).

  • Jin, J. et al. An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy & Environmental Science 7, 3371-3380, DOI: 10.1039/c4ee01824a (2014).

  • Kim, Y. G. & Soriaga, M. P. Cathodic regeneration of a clean and ordered Cu(100)-(1 x 1) surface from an air-oxidized and disordered electrode: An operando STM study. Journal of Electroanalytical Chemistry 734, 7-9, DOI: 10.1016/j.jelechem.2014.09.010 (2014).

  • Kim, Y. G., Baricuatro, J. H., Javier, A., Gregoire, J. M. & Soriaga, M. P. The Evolution of the Polycrystalline Copper Surface, First to Cu(111) and Then to Cu(100), at a Fixed CO2RR Potential: A Study by Operand EC-STM. Langmuir 30, 15053-15056, DOI: 10.1021/la504445g (2014).

  • Krawicz, A., Cedeno, D. & Moore, G. F. Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination. Physical Chemistry Chemical Physics 16, 15818-15824, DOI: 10.1039/c4cp00495g (2014).

  • Lacy, D. C., McCrory, C. C. L. & Peters, J. C. Studies of Cobalt-Mediated Electrocatalytic CO2 Reduction Using a Redox-Active Ligand. Inorganic Chemistry 53, 4980-4988, DOI: 10.1021/ic403122j (2014).

  • Leenheer, A. J., Narang, P., Lewis, N. S. & Atwater, H. A. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. Journal of Applied Physics 115, 7, DOI: 10.1063/1.4870040 (2014).

  • Letko, C. S., Panetier, J. A., Head-Gordon, M. & Tilley, T. D. Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes. Journal of the American Chemical Society 136, 9364-9376, DOI: 10.1021/ja5019755 (2014).

  • Lewerenz, H. J. Semiconductor Surface Transformations for Photoelectrochemical Energy Conversion. Journal of the Electrochemical Society 161, H3117-H3129, DOI: 10.1149/2.0211413jes (2014).

  • Lewerenz, J. H. Self-Organization Phenomena in Photoelectrochemical Energy Conversion: Nanoemitter Solar Cells. Reviews in Advanced Sciences and Engineering 4, 1-11, DOI: 10.1166/rase.2014.1081(2014).

  • Lichterman, M. F. et al. Stabilization of n-cadmium telluride photoanodes for water oxidation to O-2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition. Energy & Environmental Science 7, 3334-3337, DOI: 10.1039/c4ee01914h (2014).

  • Lin, T. P. & Peters, J. C. Boryl-Metal Bonds Facilitate Cobalt/Nickel-Catalyzed Olefin Hydrogenation. Journal of the American Chemical Society 136, 13672-13683, DOI: 10.1021/ja504667f (2014).

  • Liu, R., Zheng, Z., Spurgeon, J. & Yang, X. G. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy & Environmental Science 7, 2504-2517, DOI: 10.1039/c4ee00450g (2014).

  • Liu, W. J., Sharp, I. D. & Tilley, T. D. Multifunctional Silicon Surfaces: Reaction of Dichlorocarbene Generated from Seyferth Reagent with Hydrogen-Terminated Silicon (111) Surfaces. Langmuir 30, 172-178, DOI: 10.1021/la403789a (2014).

  • Lobaccaro, P. et al. Electrodeposition of High-Purity Indium Thin Films and Its Application to Indium Phosphide Solar Cells. Journal of the Electrochemical Society 161, D794-D800, DOI: 10.1149/2.0821414jes (2014).

  • Ma, J. & Wang, L. W. The role of the isolated 6s states in BiVO4 on the electronic and atomic structures. Applied Physics Letters 105, 4, DOI: 10.1063/1.4900549 (2014).

  • May, M. M., Lewerenz, H. J. & Hannappel, T. Optical in Situ Study of InP(100) Surface Chemistry: Dissociative Adsorption of Water and Oxygen. Journal of Physical Chemistry C 118, 19032-19041, DOI: 10.1021/jp502955m (2014).

  • McDonald, M. B., Ardo, S., Lewis, N. S. & Freund, M. S. Use of Bipolar Membranes for Maintaining Steady-State pH Gradients in Membrane-Supported, Solar-Driven Water Splitting Michael. Chemsuschem 7, 3021-3027, DOI: 10.1002/cssc.201402288 (2014).

  • McDowell, M. T. et al. Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO2/Ni Coatings. Journal of Physical Chemistry C 118, 19618-19624, DOI: 10.1021/jp506133y (2014).

  • McEnaney, J. M. et al. Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution. Chemistry of Materials 26, 4826-4831, DOI: 10.1021/cm502035s (2014).

  • McEnaney, J. M. et al. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chemical Communications 50, 11026-11028, DOI: 10.1039/c4cc04709e (2014).

  • McKone, J. R., Lewis, N. S. & Gray, H. B. Will Solar-Driven Water-Splitting Devices See the Light of Day? Chemistry of Materials 26, 407-414, DOI: 10.1021/cm4021518 (2014).

  • Modestino, M. A. et al. Robust production of purified H-2 in a stable, self-regulating, and continuously operating solar fuel generator. Energy & Environmental Science 7, 297-301, DOI: 10.1039/c3ee43214a(2014).

  • Narang, P. et al. Bandgap Tunability in Zn(Sn,Ge)N-2 Semiconductor Alloys. Advanced Materials 26, 1235-1241, DOI: 10.1002/adma.201304473 (2014).

  • Pala, R. A., Leenheer, A. J., Lichterman, M., Atwater, H. A. & Lewis, N. S. Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes. Energy & Environmental Science 7, 3424-3430, DOI: 10.1039/c4ee01580k (2014).

  • Pesenson, M. Z., Suram, S. K. & Gregoire, J. M. Statistical Analysis and Interpolation of Compositional Data in Materials Science. ACS Combinatorial Science, DOI: 10.1021/co5001458 (2014).

  • Rivest, J. B., Li, G., Sharp, I. D., Neaton, J. B. & Milliron, D. J. Phosphonic Acid Adsorbates Tune the Surface Potential of TiO2 in Gas and Liquid Environments. Journal of Physical Chemistry Letters 5, 2450-2454,DOI: 10.1021/jz501050f (2014).

  • Saadi, F. H. et al. CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. Journal of Physical Chemistry C 118, 29294-29300, DOI: 10.1021/jp5054452 (2014).

  • Saadi, F. H. et al. Operand Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction. Acs Catalysis 4, 2866-2873, DOI: 10.1021/cs500412u (2014).

  • Sanabria-Chinchilla, J. et al. Immobilization-Enabled Proton Reduction Catalysis by a Di-iron Hydrogenase Mimic. Electrocatalysis 5, 5-7, DOI: 10.1007/s12678-013-0157-y (2014).

  • Sanchez Casalongue, H. G. et al. In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction. Angewandte Chemie-International Edition 53, 7169-7172, DOI: 10.1002/anie.201402311 (2014).

  • Sanchez Casalongue, H. G. et al. Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C 118, 29252-29259, DOI: 10.1021/jp505394e (2014).

  • Sathre, R. et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy & Environmental Science 7, 3264-3278, DOI: 10.1039/c4ee01019a (2014).

  • Shaffer, D. W. et al. Reactivity of a Series of Isostructural Cobalt Pincer Complexes with CO2, CO, and H+. Inorganic Chemistry 53, 13031-13041, DOI: 10.1021/ic5021725 (2014).

  • Shaner, M. R. et al. Photoelectrochemistry of core-shell tandem junction n-p(+)-Si/n-WO3 microwire array photoelectrodes. Energy & Environmental Science 7, 779-790, DOI: 10.1039/c3ee43048k (2014).

  • Shinde, A. et al. High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis, 1-8, DOI: 10.1007/s12678-014-0237-7 (2014).

  • Singh, M. R., Stevens, J. C. & Weber, A. Z. Design of Membrane-Encapsulated Wireless Photoelectrochemical Cells for Hydrogen Production. Journal of the Electrochemical Society 161, E3283-E3296, DOI: 10.1149/2.033408jes (2014).

  • Spurgeon, J. M., Velazquez, J. M. & McDowell, M. T. Improving O-2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Physical Chemistry Chemical Physics 16, 3623-3631, DOI: 10.1039/c3cp55527e (2014).

  • Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature Communications 5, 8, DOI: 10.1038/ncomms6788 (2014).

  • Supplie, O. et al. Materials for light-induced water splitting: In situ controlled surface preparation of GaPN epilayers grown lattice-matched on Si(100). Journal of Applied Physics 115, 18, DOI: 10.1063/1.4869121(2014).

  • Velazquez, J. M. et al. Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils. Journal of Electroanalytical Chemistry 716, 45-48, DOI: 10.1016/j.jelechem.2013.11.030 (2014).

  • Warren, E. L., Atwater, H. A. & Lewis, N. S. Silicon Microwire Arrays for Solar Energy-Conversion Applications. Journal of Physical Chemistry C 118, 747-759, DOI: 10.1021/jp406280x (2014).

  • Williams, T. E. et al. NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices. Journal of Materials Chemistry C 2, 3328-3335, DOI: 10.1039/c3tc32247e (2014).

  • Xiang, C. et al. High-Throughput Bubble Screening Method for Combinatorial Discovery of Electrocatalysts for Water Splitting. ACS Combinatorial Science 16, 47-52, DOI: 10.1021/co400151h(2014).

  • Xiang, C. et al. Mapping Quantum Yield for (Fe–Zn–Sn–Ti)Ox Photoabsorbers Using a High Throughput Photoelectrochemical Screening System. ACS Combinatorial Science 16, 120-127, DOI: 10.1021/co400081w (2014).

  • Xiao, H. & Goddard, W. A. Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se-2/CdS) solar cell interfaces and implications for improving performance. Journal of Chemical Physics 141, 7, DOI: 10.1063/1.4893985 (2014).

  • Yang, J. H. et al. Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces. Journal of the American Chemical Society 136, 6191-6194,DOI: 10.1021/ja501513t (2014).

  • Zhu, Y. et al. Visualizing the Stoichiometry of Industrial-Style Co-Mo-S Catalysts with Single-Atom Sensitivity. Angewandte Chemie International Edition, DOI: 10.1002/anie.201405690 (2014).

+ 2013

  • Alayoglu, S. et al. Pt-Mediated Reversible Reduction and Expansion of CeO2 in Pt Nanoparticle/Mesoporous CeO2 Catalyst: In Situ X-ray Spectroscopy and Diffraction Studies under Redox (H-2 and O-2) Atmospheres. Journal of Physical Chemistry C 117, 26608-26616, DOI: 10.1021/jp407280e (2013).

  • Bajdich, M., Garcia-Mota, M., Vojvodic, A., Norskov, J. K. & Bell, A. T. Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society 135, 13521-13530, DOI: 10.1021/ja405997s (2013).

  • Baricuatro, J. H., Soto, J. C., Cummins, K. D. & Soriaga, M. P. High-resolution electron energy loss spectroscopy of anions chemisorbed on electrode surfaces: The effect of counter cations. Electrochem. Commun. 27, 176-179, DOI: 10.1016/j.elecom.2012.11.005 (2013).

  • Chen, L. et al. Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C 117, 21635-21642, DOI: 10.1021/jp406019r (2013).

  • Chi, C. Y. et al. Twin-Free GaAs Nanosheets by Selective Area Growth: Implications for Defect-Free Nanostructures. Nano Letters 13, 2506-2515, DOI: 10.1021/nl400561j (2013).

  • Chmielowiec, B. et al. Molecular catalysis that transpires only when the complex is heterogenized: studies of a hydrogenase complex surface-tethered on polycrystalline and (111)-faceted gold by EC, PM-FT-IRRAS, HREELS, XPS and STM. Journal of Electroanalytical Chemistry, DOI: 10.1016/j.jelechem.2013.12.025 (2013).

  • Coridan, R. H., Shaner, M., Wiggenhorn, C., Brunschwig, B. S. & Lewis, N. S. Electrical and Photoelectrochemical Properties of WO3/Si Tandem Photoelectrodes. Journal of Physical Chemistry C 117, 6949-6957, DOI: 10.1021/jp311947x (2013).

  • Friebel, D. et al. On the chemical state of Co oxide electrocatalysts during alkaline water splitting. Physical Chemistry Chemical Physics 15, 17460-17467, DOI: 10.1039/c3cp52981a (2013).

  • Gorlin, Y. et al. In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. Journal of the American Chemical Society 135, 8525-8534, DOI: 10.1021/ja3104632 (2013).

  • Gregoire, J. M. et al. Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts. Journal of the Electrochemical Society 160, F337-F342, DOI: 10.1149/2.035304jes(2013).

  • Gregoire, J. M., Xiang, C. X., Liu, X. N., Marcin, M. & Jin, J. Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Review of Scientific Instruments 84, 6, DOI: 10.1063/1.4790419 (2013).

  • Hannappel, T., May, M. M. & Lewerenz, H. J. in "Photoelectrochemical Water Splitting: Materials, Processes and Architectures" (eds H. J. Lewerenz & L. M. Peter) Ch. Chapter 9, (The Royal Society of Chemistry, 2013).

  • Haussener, S., Hu, S., Xiang, C. X., Weber, A. Z. & Lewis, N. S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy & Environmental Science 6, 3605-3618, DOI: 10.1039/c3ee41302k (2013).

  • Hu, S. et al. Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy & Environmental Science 6, 1879-1890, DOI: 10.1039/c3ee40243f (2013).

  • Hu, S., Xiang, C. X., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy & Environmental Science 6, 2984-2993, DOI: 10.1039/c3ee40453f (2013).

  • Kashif, M. K. et al. Stable Dye-Sensitized Solar Cell Electrolytes Based on Cobalt(II)/(III) Complexes of a Hexadentate Pyridyl Ligand. Angewandte Chemie-International Edition 52, 5527-5531, DOI: 10.1002/anie.201300070 (2013).

  • Kisielowski, C. et al. Real-time sub-Angstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene. Physical Review B 88, 12, DOI: 10.1103/PhysRevB.88.024305 (2013).

  • Krawicz, A. et al. Photofunctional Construct That Interfaces Molecular Cobalt-Based Catalysts for H-2 Production to a Visible-Light-Absorbing Semiconductor. Journal of the American Chemical Society 135, 11861-11868, DOI: 10.1021/ja404158r (2013).

  • Letilly, M., Skorupska, K. & Lewerenz, H. J. Initial Phase of Photoelectrochemical Conditioning of Silicon in Alkaline Media: Surface Chemistry and Topography. Journal of Physical Chemistry C 117, 16381-16391,DOI: 10.1021/jp401853p (2013).

  • Lewerenz, H. J. in Encyclopedia of Applied Electrochemistry" (eds R. F. Savinell, K. I. Ota, & G. Kreysa) 1893-1924 (Spinger Heidelberg, 2013).

  • Lewerenz, H. J. & Peter, L. M. in "Photoelectrochemical Water Splitting: Materials, Processes and Architectures" (eds H. J. Lewerenz & L. M. Peter) Chapter 16, (The Royal Society of Chemistry, 2013).

  • Lewerenz, H. J. On the Structure of the Helmholtz Layer and its Implications on Electrode Kinetics. Electrochemical Society Transactions 50, 3-20, DOI: 10.1149/05052.0003ecst (2013).

  • Lewis, N. S. An integrated, systems approach to the development of solar-fuels generators. The Electrochemical Society, Interface (2013).

  • Lichterman, M. F. et al. Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition. Journal of Physical Chemistry Letters 4, 4188-4191, DOI: 10.1021/jz4022415 (2013).

  • Lin, T. P. & Peters, J. C. Boryl-Mediated Reversible H-2 Activation at Cobalt: Catalytic Hydrogenation, Dehydrogenation, and Transfer Hydrogenation. Journal of the American Chemical Society 135, 15310-15313, DOI: 10.1021/ja408397v (2013).

  • Lin, Y. J. et al. Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production. Nano Letters 13, 5615-5618, DOI: 10.1021/nl403265k (2013).

  • Louie, M. W. & Bell, A. T. An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society 135, 12329-12337, DOI: 10.1021/ja405351s (2013).

  • McCrory, C. C. L., Jung, S. H., Peters, J. C. & Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 135, 16977-16987, DOI: 10.1021/ja407115p (2013).

  • McKone, J. R., Grimm, R. L. & Lewis, N. S. in Photoelectrochemical Water Splitting: Materials, Processes and Architecture (eds H. J. Lewerenz & L. M. Peter) Chapter 3, (Royal Society of Chemistry, 2013).

  • McKone, J. R., Pieterick, A. P., Gray, H. B. & Lewis, N. S. Hydrogen Evolution from Pt/Ru-Coated p-Type WSe2 Photocathodes. Journal of the American Chemical Society 135, 223-231, DOI: 10.1021/ja308581g(2013).

  • Modestino, M. A. et al. Integrated microfluidic test-bed for energy conversion devices. Physical Chemistry Chemical Physics 15, 7050-7054, DOI: 10.1039/c3cp51302e (2013).

  • Modestino, M. A. et al. Self-Assembly and Transport Limitations in Confined Nafion Films. Macromolecules 46, 867-873, DOI: 10.1021/ma301999a (2013).

  • Moore, G. F. & Sharp, I. D. A Noble-Metal-Free Hydrogen Evolution Catalyst Grafted to Visible Light-Absorbing Semiconductors. Journal of Physical Chemistry Letters 4, 568-572, DOI: 10.1021/jz400028z(2013).

  • Nippe, M. et al. Catalytic proton reduction with transition metal complexes of the redox-active ligand bpy2PYMe. Chemical Science 4, 3934-3945, DOI: 10.1039/c3sc51660a (2013).

  • Sampson, M. D. et al. Direct observation of the reduction of carbon dioxide by rhenium bipyridine catalysts. Energy & Environmental Science 6, 3748-3755, DOI: 10.1039/c3ee42186d (2013).

  • Sanabria-Chinchilla, J., Chen, X. L., Li, D. & Soriaga, M. P. Chemisorption-Isotherm Measurements at Electrode Surfaces by Quantitative High-Resolution Electron Energy Loss Spectroscopy. Electrocatalysis 4, 101-103, DOI: 10.1007/s12678-013-0125-6 (2013).

  • Sanchez Casalongue, H. et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Communications 4, 6, DOI: 10.1038/ncomms3817 (2013).

  • Schneider, Y. et al. Ionic Conduction in Nanostructured Membranes Based on Polymerized Protic Ionic Liquids. Macromolecules 46, 1543-1548, DOI: 10.1021/ma3024624 (2013).

  • Shaner, M. R., Fountaine, K. T. & Lewerenz, H. J. Current-voltage characteristics of coupled photodiode-electrocatalyst devices. Applied Physics Letters 103, 4, DOI: 10.1063/1.4822179 (2013).

  • Sudre, G., Inceoglu, S., Cotanda, P. & Balsara, N. P. Influence of Bound Ion on the Morphology and Conductivity of Anion-Conducting Block Copolymers. Macromolecules 46, 1519-1527, DOI: 10.1021/ma302357k (2013).

  • Thoi, V. S., Sun, Y. J., Long, J. R. & Chang, C. J. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev. 42, 2388-2400, DOI: 10.1039/c2cs35272a (2013).

  • Ugeda, M. M. et al. Adsorption and Stability of pi-Bonded Ethylene on GaP(110). Journal of Physical Chemistry C 117, 26091-26096, DOI: 10.1021/jp408539x (2013).

  • Wang, W. C., Chen, S. Y., Yang, P. X., Duan, C. G. & Wang, L. W. Si:WO3 heterostructure for Z-scheme water splitting: an ab initio study. Journal of Materials Chemistry A 1, 1078-1085, DOI: 10.1039/c2ta00441k (2013).

  • Xiang, C. X., Chen, Y. K. & Lewis, N. S. Modeling an integrated photoelectrolysis system sustained by water vapor. Energy & Environmental Science 6, 3713-3721, DOI: 10.1039/c3ee42143k (2013).

  • Yu, M., Doak, P., Tamblyn, I. & Neaton, J. B. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces. Journal of Physical Chemistry Letters 4, 1701-1706, DOI: 10.1021/jz400601t (2013).

  • Zhai, P. et al. Net primary energy balance of a solar-driven photoelectrochemical water-splitting device. Energy & Environmental Science 6, 2380-2389, DOI: 10.1039/c3ee40880a (2013).

+ 2012

  • Chen, S. Y. & Wang, L. W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chemistry of Materials 24, 3659-3666, DOI: 10.1021/cm302533s(2012).

  • Chen, S. Y., Wang, L. W., Walsh, A., Gong, X. G. & Wei, S. H. Abundance of Cu-Zn + Sn-Zn and 2Cu(Zn) + Sn-Zn defect clusters in kesterite solar cells. Applied Physics Letters 101, 4, DOI: 10.1063/1.4768215(2012).

  • Diamond, A. M. et al. Copper-alloyed ZnS as a p-type transparent conducting material. Phys. Status Solidi A-Appl. Mat. 209, 2101-2107, DOI: 10.1002/pssa.201228181 (2012).

  • Garcia-Mota, M. et al. Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides. Journal of Physical Chemistry C 116, 21077-21082, DOI: 10.1021/jp306303y (2012).

  • Haussener, S. et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy & Environmental Science 5, 9922-9935, DOI: 10.1039/c2ee23187e (2012).

  • Hoarfrost, M. L. & Segalman, R. A. Conductivity Scaling Relationships for Nanostructured Block Copolymer/Ionic Liquid Membranes. Acs Macro Letters 1, 937-943, DOI: 10.1021/mz300241g (2012).

  • Hoarfrost, M. L., Tyagi, M., Segalman, R. A. & Reimer, J. A. Proton Hopping and Long-Range Transport in the Protic Ionic Liquid [Im][TFSI], Probed by Pulsed-Field Gradient NMR and Quasi-Elastic Neutron Scattering. Journal of Physical Chemistry B 116, 8201-8209, DOI: 10.1021/jp3044237 (2012).

  • Karunadasa, H. I. et al. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation. Science 335, 698-702, DOI: 10.1126/science.1215868 (2012).

  • Kusoglu, A., Modestino, M. A., Hexemer, A., Segalman, R. A. & Weber, A. Z. Subsecond Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-ray Scattering. Acs Macro Letters 1, 33-36, DOI: 10.1021/mz200015c (2012).

  • Lee, M. H. et al. p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production. Angewandte Chemie-International Edition 51, 10760-10764, DOI: 10.1002/anie.201203174 (2012).

  • Leenheer, A. J. & Atwater, H. A. Imaging Water-Splitting Electrocatalysts with pH-Sensing Confocal Fluorescence Microscopy. Journal of the Electrochemical Society 159, H752-H757, DOI: 10.1149/2.022209jes (2012).

  • Modestino, M. A., Kusoglu, A., Hexemer, A., Weber, A. Z. & Segalman, R. A. Controlling Nafion Structure and Properties via Wetting Interactions. Macromolecules 45, 4681-4688, DOI: 10.1021/ma300212f(2012).

  • Yeo, B. S. & Bell, A. T. In Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of Physical Chemistry C 116, 8394-8400, DOI: 10.1021/jp3007415 (2012).

+ 2011

  • Chen, S. Y. & Wang, L. W. Intrinsic defects and electronic conductivity of TaON: First-principles insights. Applied Physics Letters 99, 222103, DOI: 10.1063/1.3664346 (2011).

  • Spurgeon, J. M. & Lewis, N. S. Proton exchange membrane electrolysis sustained by water vapor. Energy & Environmental Science 4, 2993-2998, DOI: 10.1039/c1ee01203g (2011).

  • Sun, J. W., Liu, C. & Yang, P. D. Surfactant-Free, Large-Scale, Solution-Liquid-Solid Growth of Gallium Phosphide Nanowires and Their Use for Visible-Light-Driven Hydrogen Production from Water Reduction. Journal of the American Chemical Society 133, 19306-19309, DOI: 10.1021/ja2083398 (2011).

  • Sun, Y. J. et al. Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water. Journal of the American Chemical Society 133, 9212-9215, DOI: 10.1021/ja202743r (2011).