+ 2016

  • Ager III, J. W. Photoelectrochemical Approach for Water Splitting. in Solar to Chemical Energy Conversion, Volume 32, 249-260 (2016).
  • Agnoli, S. and Favaro, M. Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. Journal of Materials Chemistry A, DOI: 10.1039/C5TA10599D (2016).
  • Ali-Löytty, H. et al. Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction. Journal of Physical Chemistry C 120(4), 2247–2253, DOI: 10.1021/acs.jpcc.5b10931 (2016).
  • Amani, M. et al. High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. ACS Nano, 10(7), 6535-6541, DOI: 10.1021/acsnano.6b03443 (2016).
  • Azarpira, A. et al. Sustained Water Oxidation by Direct Electrosynthesis of Ultrathin Organic Protection Films on Silicon. Advanced Energy Materials, DOI: 10.1002/aenm.201502314 (2016).
  • Baricuatro, J. H. et al. Influence of Redox-Inactive Cations on the Structure and Electrochemical Reactivity of Synthetic Birnessite, a Heterogeneous Analog for the Oxygen-Evolving Complex. The Journal of Physical Chemistry C, 120 (29), 15618–15631,  DOI: 10.1021/acs.jpcc.5b07028 (2016).
  • Bernardi, M. & Grossman, J. C. Computer Calculations across Time and Length Scales in Photovoltaic Solar Cells. Energy&Environmental Science, DOI: 10.1039/C6EE01010E (2016).
  • Brown, A. M. et al. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. Physical Review B, 94, 075120, DOI: http://dx.doi.org/10.1103/PhysRevB.94.075120 (2016).
  • Bullock, J. et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nature Energy, DOI: 10.1038/nenergy.2015.31 (2016).
  • Chan, K. & Norskov, J. K. Potential Dependence of Electrochemical Barriers from ab Initio Calculations. The Journal of Physical Chemistry Letters, 7, 1686-1690, DOI: 10.1021/acs.jpclett.6b00382 (2016).
  • Chen, L. D., Urushihara, M., Chan, K. & Norskov, J. K. Electric Field Effects in Electrochemical CO2 Reduction. ACS Catalysis, 6, 7133-7139, DOI: 10.1021/acscatal.6b02299 (2016).
  • Chen, Y., Lewis, N. S. & Xiang, C. Modeling and Simulation of the Spatial and Light-Intensity Dependence of Product Distributions in an Integrated Photoelectrochemical CO2 Reduction System. ACS Energy Letters, DOI: 10.1021/acsenergylett.6b00134 (2016).
  • Cheng, C. et al. Influence of Constitution and Charge on Radical Pairing Interactions in Trisradical Tricationic Complexes. Journal of the American Chemical Society, DOI: 10.1021/jacs.6b04343 (2016).
  • Cheng, M.-J. et al. Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons. ACS Catalysis, DOI: 10.1021/acscatal.6b01393 (2016).
  • Cheng, T., Xiao, H. & Goddard, W. A. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. Journal of the American Chemical Society, DOI: 10.1021/jacs.6b08534 (2016).
  • Cooper, J. K. et al. Role of Hydrogen in Defining the n-Type Character of BiVO4 Photoanodes. Chemistry of Materials, DOI: 10.1021/acs.chemmater.6b01994 (2016).
  • Crowley, J. M., Tahir-Kheli, J. & Goddard III, W. A. Resolution of the Band Gap Prediction Problem for Materials Design. The Journal of Physical Chemistry Letters, 7, 1198-1203, DOI: 10.1021/acs.jpclett.5b02870 (2016).
  • Dasog, M. et al. Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition. Nano Letters, DOI: 10.1021/acs.nanolett.6b01782 (2016).
  • Desai, S. B. et al. Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Advanced Materials, DOI: 10.1002/adma.201506171 (2016).
  • Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proceeding of the National Academy of Sciences, 113(8), 1993-1998, DOI: 10.1073/pnas.1600789113 (2016).
  • Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nature Communications, 7, 12695, DOI: 10.1038/ncomms12695 (2016).
  • Fountaine, K. T., Cheng, W.-H., Bukowsky, C. R. & Atwater, H. A. Near-Unity Unselective Absorption in Sparse InP Nanowire Arrays. ACS Photonics, DOI: 10.1021/acsphotonics.6b00341 (2016).
  • Fountaine, K. T., Lewerenz, H. J. & Atwater, H. A. Efficiency limits for photoelectrochemical water-splitting. Nature Communications, DOI: 10.1038/ncomms13706 (2016).
  • Goodpaster, J. D., Bell, A. T.  & Head-Gordon, M. Identification of Possible Pathways for C–C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. The Journal of Physical Chemistry Letters, 7, 1471-1477, DOI: 10.1021/acs.jpclett.6b00358 (2016).
  • Hansen, H. A. et al. Bifunctional alloys for the electroreduction of CO2 and CO. Physical Chemistry Chemical Physics, 18, 9194-9201, DOI: 10.1039/C5CP07717F  (2016).
  • Hattrick-Simpers, J. R., Gregoire, J. M & Kusne, G. Perspective: Composition–structure–property mapping in high-throughput experiments: Turning data into knowledge. APL Materials, 4, 053211, http://dx.doi.org/10.1063/1.4950995 (2016).
  • Hong, X. et al. How Doped MoS2 Breaks Transition-Metal Scaling Relations for CO2 Electrochemical Reduction. ACS Catalysis, 6, 4428-4437, DOI: 10.1021/acscatal.6b00619 (2016).
  • Hu, S. et al. Electrical, Photoelectrochemical, and Photoelectron Spectroscopic Investigation of the Interfacial Transport and Energetics of Amorphous TiO2/Si Heterojunctions. Journal of Physical Chemistry C, 120(6), 3117-3129, DOI: 10.1021/acs.jpcc.5b09121 (2016).
  • Huang, Z. et al. PeakForce Scanning Electrochemical Microscopy with Nanoelectrode Probes. Microscopy Today, DOI: 10.1017/18 S1551929516000882 (2016).
  • Jiang, S. et al. Pressure-Dependent Polymorphism and Band-Gap Tuning of Methylammonium Lead Iodide Perovskite. Angewandte Chemie, DOI: 10.1002/anie.201601788 (2016).
  • Johnson, S. I, Nielsen, R. J. & Goddard, W. A. Selectivity for HCO2– over H2 in the Electrochemical Catalytic Reduction of CO2 by (POCOP)IrH2. ACS Catalysis, 6, 6362-6371, DOI: 10.1021/acscatal.6b01755 (2016).
  • Kim, Y.-G. et al. Regulating the Product Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu Electrode Surface. Electrocatalysis, DOI: 10.1007/s12678-016-0314-1 (2016).
  • Kim, Y.-G. et al. Surface reconstruction of pure-Cu single-crystal electrodes under Co-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS. Journal of Electroanalytical Chemistry, http://dx.doi.org/10.1016/j.jelechem.2016.09.029 (2016).
  • Kiriya, D. et al. General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic Hydrogen Evolution Reaction. Nano Letters, 16(7), 4047-4053, DOI: 10.1021/acs.nanolett.6b00569 (2016).
  • Kisielowski, C. et al. Detecting structural variances of Co3O4 catalysts by controlling beam-induced sample alterations in the vacuum of a transmission electron microscope. Advanced Structural and Chemical Imaging, DOI: 10.1186/s40679-016-0027-9 (2016).
  • Kwon, Y. et al. CO2 electroreduction with high ethylene selectivity via nanostructuring of polycrystalline copper. ChemElectroChem, DOI: 10.1002/celc.201600068 (2016).
  • Leblebici, S. Y. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nature Energy, 1, 16093, DOI: 10.1038/nenergy.2016.93 (2016).
  • Lewerenz, H.-J. et al. Operando Analyses of Solar Fuels Light Absorbers and Catalysts. Electrochimica Acta, DOI: 10.1016/j.electacta.2016.06.006 (2016).
  • Lewis, N. S. Research opportunities to advance solar energy utilization. Science, 351 (6271), DOI: 10.1126/science.aad1920 (2016).
  • Li, Y. et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nature Communications, 7, 12446, DOI: 10.1038/ncomms12446 (2016).
  • Liberman-Martin, A. L. et al. Biaryl Reductive Elimination Is Dramatically Accelerated by Remote Lewis Acid Binding to a 2,2′-Bipyrimidyl–Platinum Complex: Evidence for a Bidentate Ligand Dissociation Mechanism. Organometallics, DOI: 10.1021/acs.organomet.5b01003 (2016).
  • Lichterman, M. F. et al. An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO2/Ni/Electrolyte Interfaces. Journal of the Electrochemical Society, 163(2), H139-H146, DOI: 10.1149/2.0861602jes (2016).
  • Liu, Y., Xiao, H. & Goddard, W. A. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects. Nano Lett., 16(5), pp 3335-3340, DOI: 10.1021/acs.nanolett.6b00964 (2016).
  • Liu, Y., et al. Undoped and Ni-Doped CoOx Surface Modification of Porous BiVO4 Photoelectrodes for Water Oxidation. The Journal Of Physical Chemistry, DOI: 10.1021/acs.jpcc.6b08654 (2016).
  • Lobaccaro, P. et al. Effects of Temperature and Gas-Liquid Mass Transfer on the Operation of Small Electrochemical Cells for the Quantitative Evaluation of CO2 Reduction Electrocatalysts. Phy. Chem. Chem Phys., DOI: 10.1039/C6CP05287H (2016).
  • Loiudice, A. et al. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. Angewandte Chemie Int. Ed., DOI: 10.1002/anie.201601582 (2016).
  • Luz, I. et al. Understanding the Formation Mechanism of Metal Nanocrystal@MOF-74 Hybrids. Chemistry of Materials, 28(11), 3839-3849, DOI: 10.1021/acs.chemmater.6b00880 (2016).
  • Meng, X. et al. Discovery of Fe2P-Type Ti(Zr/Hf)2O6 Photocatalysts toward Water Splitting. Chemistry of Materials, 28(5), 1335-1342, DOI: 10.1021/acs.chemmater.5b04256 (2016).
  • Mori, R. A. et al. Towards Characterization of Photo-Excited Electron Transfer and Catalysis in Natural and Artificial Systems Using XFELs. Faraday Discussions, DOI: 10.1039/C6FD00084C  (2016).
  • Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics, DOI: 10.1515/nanoph-2016-0007 (2016).
  • Narang, P. et al. Cubic Nonlinearity Driven Up-Conversion in High-Field Plasmonic Hot Carrier Systems. Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.6b03463 (2016).
  • Newhouse, P. et al. Solar Fuels Photoanodes Prepared by Inkjet Printing of Copper Vanadates. Journal of Materials Chemistry A, DOI: 10.1039/C6TA01252C (2016).
  • Ogasawara, H., Kaya, S. &Nilsson, A. Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems. Topics in Catalysis, 59(5-7), pp 439-447, DOI: 10.1007/s11244-015-0525-3 (2016).
  • Panetier, J. A., Letko, C. S., Tilley, T. D. & Head-Gordon, M. Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction. Journal of Chemical Theory and Computation, 12(1), pp 223-230, DOI: 10.1021/acs.jctc.5b00968 (2016).
  • Pham, H. H., Cheng, M.-J., Frei, H. & Wang, L.-W. Surface Proton Hopping and Fast-Kinetics Pathway of Water Oxidation on Co3O4 (001) Surface. ACS Catalysis, 6(8), 5610-5617, DOI: 10.1021/acscatal.6b00713 (2016).
  • Ristova, M. M. et al. Electrochemical modification of the optical and electrical properties of Cd-rich NixCd1–xO alloys. Solar Energy materials and Solar Cells, DOI:10.1016/j.solmat.2015.12.008 (2016).
  • Roy, T. et al. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Applied Physics Letters,  108, 083111,  http://dx.doi.org/10.1063/1.4942647 (2016).
  • Sachsenhauser, M. et al. Suppression of Photoanodic Surface Oxidation of N-type 6H-SiC Electrodes in Aqueous Electrolytes. Langmuir, DOI: 10.1021/acs.langmuir.5b04376 (2016).
  • Sachsenhauser, M., Sharp, I. D., Stutzmann, M. & Garrido, J. A. A. Surface State Mediated Electron Transfer Across the N-type SiC/Electrolyte Interface. The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b11569 (2016).
  • Sandberg, R. B., Montoya, J. H, Chan, K. & Norskov, J. K. CO-CO coupling on Cu facets: Coverage, strain and field effects. Surface Science, 654, 56-62, DOI: http://dx.doi.org/10.1016/j.susc.2016.08.006 (2016).
  • Sanoja, G. E., et al. Structure–Conductivity Relationships of Block Copolymer Membranes Based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing, Macromolecules, 49(6), 2216-2223, DOI: 10.1021/acs.macromol.5b02614 (2016).
  • Sathre, R. et al. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energy & Environmental Science, DOI: 10.1039/C5EE03040D (2016).
  • Schwarz, K. et al. Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges. Physical Chemistry Chemical Physics, 18, 16216-16223, DOI: 10.1039/C6CP01652A (2016).
  • Shaner, M. R. et al. Si/TiO2 Tandem-Junction Microwire Arrays for Unassisted Solar-DrivenWater Splitting. Journal of The Electrochemical Society, 163 (5) H261-H264, DOI: 10.1149/2.0141605jes (2016).
  • Shaner, M. R. et al. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & Environmental Science, DOI: 10.1039/C5EE02573G (2016).
  • Sharp, I. D. et al. Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition Metal Oxide Photoanodes. ACS Energy Letters, DOI: 10.1021/acsenergylett.6b00586 (2016).
  • Sheng, H. & Frei, H. Direct Observation by Rapid-Scan FT-IR Spectroscopy of Two-Electron-Reduced Intermediate of Tetraaza Catalyst [CoIIN4H(MeCN)]2+ Converting CO2 to CO. Journal of the American Chemical Society, 138(31), 9959-9967, DOI: 10.1021/jacs.6b05248 (2016).
  • Shi, C., Chan, K., Yoo, J. S. & Norskov, J. K. Barriers of Electrochemical CO2 Reduction on Transition Metals. Org. Process Res. Dev., DOI: 10.1021/acs.oprd.6b00103 (2016).
  • Shinde, A. et al. Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials and Interfaces, DOI: 10.1021/acsami.6b06714 (2016).
  • Shinde, A. et al. The role of the CeO2/BiVO4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes. Journal of Materials Chemistry A, DOI: 10.1039/C6TA04746G (2016).
  • Sieh, D. & Kubiak, C. P. A Series of Diamagnetic Pyridine Monoimine Rhenium Complexes with Different Degrees of Metal-to-Ligand Charge Transfer: Correlating 13C NMR Chemical Shifts with Bond Lengths in Redox-Active Ligands. Chemistry, A European Journal, DOI: 10.1002/chem.201600679 (2016).
  • Singh, M. R. et al. Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. Journal of the American Chemical Society, DOI: 10.1021/jacs.6b07612 (2016).
  • Stevens, J. C. & Weber, A. Z. A Computational Study of Optically Concentrating, Solar-Fuels Generators from Annual Thermal- and Fuel-Production Efficiency Perspectives. Journal of the Electrochemical Society, 163(7), H475-H484, DOI: 10.1149/2.0121607jes (2016).
  • Sun, K. et al. A Stabilized, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting Cell Incorporating Earth-Abundant Electrocatalysts with Steady-State pH Gradients and Product Separation Enabled by a Bipolar Membrane. Advanced Energy Materials, DOI: 10.1002/aenm.201600379 (2016).
  • Suram, S. K., Newhouse, P. F. and Gregoire, J. M. High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis. ACS Combinatorial Science, DOI: 10.1021/acscombsci.6b00053 (2016)
  • Suram, S. K. et al. High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships. ACS Combinatorial Science, DOI: 10.1021/acscombsci.6b00054 (2016).
  • Suram, S. K. et al. Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System. ACS Combinatorial Science, DOI: 10.1021/acscombsci.6b00153 (2016).
  • Tolstova, Y., Omelchenko, S. T., Shing, A. M. & Atwater, H. A. Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering. Scientific Reports, 6, 23232, DOI: 10.1038/srep23232  (2016).
  • Tolstova, Y. et al. Polycrystalline Cu2O photovoltaic devices incorporating Zn(O,S) window layers. Solar Energy Materials and Solar Cells, DOI: 10.1016/j.solmat.2016.10.049 (2016).
  • Toma, et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 7, 12012, DOI: 10.1038/ncomms12012 (2016).
  • Torelli, D. A. et al. Nickel–Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials. ACS Catalysis, 6, 2100-2104, DOI: 10.1021/acscatal.5b02888 (2016).
  • Ugeda, M. M. et al. Covalent Functionalization of GaP(110) Surfaces via a Staudinger-Type Reaction with Perfluorophenyl Azide. J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.6b10691 (2016).
  • Wan, Y. et al. Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells. ACS Applied Materials and Interfaces, 8(23), 14671-14677, DOI: 10.1021/acsami.6b03599 (2016).
  • Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature Materials, DOI: 10.1038/nmat4589 (2016).
  • Wang, R. et al. Solar-Driven H2O2 Generation From H2O and O2 Using Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts. ChemSusChem, DOI: 10.1002/cssc.201600705 (2016).
  • Woods-Robinson, R. et al. P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature. Advanced Electronic Materials, DOI: 10.1002/aelm.201500396 (2016)
  • Xiang, C., Papadantonakis, K. M. & Lewis, N. Principles and Implementations of Electrolysis Systems for Water Splitting. Materials Horizons, DOI: 10.1039/C6MH00016A (2016).
  • Xiang, C. et al. Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. Angewandte Chemie, DOI: 10.1002/anie.201510463 (2016).
  • Xu, X. et al. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1–x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. Nano Letters, 16(3), 1925-1932, DOI: 10.1021/acs.nanolett.5b05124 (2016).
  • Yalamanchili, S., et al. Enhanced Absorption and <1% Spectrum-and-Angle-Averaged Reflection in Tapered Microwire Arrays. ACS Photonics, DOI: 10.1021/acsphotonics.6b00370 (2016).
  • Yang, J. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials, DOI: 10.1038/nmat4794 (2016).
  • Yang, X. et al. Dual Influence of Reduction Annealing on Diffused Hematite/FTO Junction for Enhanced Photoelectrochemical Water Oxidation. ACS Applied Materials and Interfaces, DOI: 10.1021/acsami.6b04213 (2016).
  • Zhou, H. et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 12765, DOI:10.1038/ncomms12765 (2016).
  • Zhou, J. -J. and Bernardi, M. Ab initio electron mobility and polar phonon scattering in GaAs. Physical Review B, 94, 201201(R), DOI: https://doi.org/10.1103/PhysRevB.94.201201 (2016).
  • Zhou, L. et al. Stability and Self-passivation of Copper Vanadate Photoanodes under Chemical, Electrochemical, and Photoelectrochemical Operation. Physical Chemistry Chemical Physics, DOI: 10.1039/C6CP00473C (2016).
  • Zhou, X. et al. 570 mV Photovoltage, Stabilized n-Si/CoOx Heterojunction Photoanodes Fabricated Using Atomic Layer Deposition. Energy & Environmental Science, DOI: 10.1039/C5EE03655K (2016). 
  • Zhou X. et al. Solar-Driven Reduction of 1 atm CO2 to Formate at 10% Energy-Conversion Efficiency by Use of a TiO2-Protected III-V Tandem Photoanode in Conjunction with Bipolar Membrane and a Pd/C Cathode Electrocatalyst. ACS Energy Letters, DOI: 10.1021/acsenergylett.6b00317 (2016).
  • Ziegler, M. S. et al. Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II) Complexes. Journal of the American Chemical Society, 138(20), 6484-6491, DOI: 10.1021/jacs.6b00802 (2016).

+ 2015

  • Ager III, J. W. et al. Experimental Demonstrations of Spontaneous, Solar-Driven Photoelectrochemical Water Splitting. Energy & Environmental Science, DOI: 10.1039/C5EE00457H (2015).
  • Ardo, S. et al. Unassisted solar-driven photoelectrosynthetic HI splitting using membrane-embedded Si microwire arrays. Energy & Environmental Science, DOI: 10.1039/C5EE00227C4 (2015).
  • Beckingham, B. S., Sanoja, G. E. & Lynd, N. A. Simple and Accurate Determination of Reactivity Ratios Using a Nonterminal Model of Chain Copolymerization. Macromolecules, 48(19), 6922-6930, DOI: 10.1021/acs.macromol.5b01631 (2015).
  • Berweger, S. et al. Microwave Near-Field Imaging of Two-Dimensional Semiconductors. Nano Letters 15, 1122-1127, DOI: 10.1021/nl504960u (2015).
  • Brown, A. M. et al. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nono, DOI: 10.1021/acsnano.5b06199 (2015)
  • Chen, L. et al. Mo-Doped BiVO4 Photoanodes Synthesized by Reactive Sputtering. ChemSusChem, DOI: 10.1002/cssc.201402984 (2015).
  • Chen, L. et al. P-type Transparent Conducting Oxide / n-type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation. Journal of the American Chemical Society, 2015, DOI: 10.1021/jacs.5b03536 (2015).
  • Chen, Y. et al. A Quantitative Analysis of the Efficiency of Solar-Driven Water-Splitting Device Designs Based on Tandem Photoabsorbers Patterned with Islands of Metallic Electrocatalysts. Energy & Environmental Science, DOI: 10.1039/C5EE00311C (2015).
  • Chen, Y., Lewis, N. S., & Xiang, C. Operational Constraints and Strategies for Systems to Effect the Sustainable, Solar-Driven Reduction of Atmospheric CO2. Energy & Environmental Science, DOI: 10.1039/C5EE02908B (2015).
  • Cheng, M.-J., Kwon, Y., Head-Gordon, M., & Bell, A. T. Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction. Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b05518 (2015).
  • Cheng, T., Xiao, H. & Goddard, W. A. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0. The Journal of Physical Chemistry Letters, 2015, 6, 4767-4773, DOI: 10.1021/acs.jpclett.5b02247(2015).
  • Cho, E. S. et al. Enhanced Water Vapor Blocking in Transparent Hybrid Polymer-Nanocrystal Films. Acs Macro Letters 4, 70-74, DOI: 10.1021/mz500765y (2015).
  • Clark, E. L., Singh, M. R., Kwon, Y. & Bell, A. T. Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO2. Analytical Chemistry 87(15), 8013-8020, DOI: 10.1021/acs.analchem.5b02080 (2015).
  • Cooper, J. K. et al. Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate. The Journal of Physical Chemistry C, DOI: 10.1021/jp512169w (2015).
  • Coridan, R. H. et al. Methods for Comparing the Performance of Energy-Conversion Systems for Use in Solar Fuels and Solar Electricity Generation. Energy & Environmental Science, DOI: 10.1039/C5EE00777A (2015).
  • Edri, E. & Frei, H. Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer. Journal of Physical Chemistry C, 119(51), pp. 28326-28334, DOI: 10.1021/acs.jpcc.5b09994 (2015).
  • Esposito, D. V. et al. Methods of photoelectrode characterization with high spatial and temporal resolution. Energy & Environmental Science 8, 2863-2885, DOI: 10.1039/C5EE00835B (2015).
  • Evans, C. M., Singh, M. R., Lynd, N. A. & Segalman, R. A. Improving the Gas Barrier Properties of Nafion via Thermal Annealing: Evidence for Diffusion through Hydrophilic Channels and Matrix. Macromolecules 48(10) 3303-3309, DOI: 10.1021/acs.macromol.5b00579 (2015).
  • Fabian, D. M. et al. Particle Suspension Reactors and Materials for Solar-Driven Water Splitting. Energy & Environmental Science, DOI: 10.1039/C5EE01434D (2015).
  • Faludi, J., Bayley, C., Bhogal, S. & Iribarne, M. Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototyping Journal 21(1) 14-33,DOI: 10.1108/rpj-07-2013-0067 (2015).
  • Fenwick, A. Q. & Luca, O. R. The Formation of CO by Thermal Decomposition of Formic Acid under Electrochemical Conditions of CO2 Reduction. Journal of Photochemistry and Photobiology B: Biology 152(A), 42-46, DOI: 10.1016/j.jphotobiol.2015.04.003 (2015).
  • Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society 137, 1305–1313, DOI: 10.1021/ja511559d (2015).
  • Fukushima, T., Drisdell, W., Yano, J. & Surendranath, Y. Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts. Journal of the American Chemical Society 137(34), 10926-10929, DOI: 10.1021/jacs.5b06737 (2015).
  • Guevarra, D. et al. Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO4. Energy & Environmental Science, DOI: 10.1039/C5EE03488D (2015).
  • Gul, S. et al. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Physical Chemistry Chemical Physics 17, 8901-8912, DOI: 10.1039/C5CP01023C (2015).
  • Haber, J. A., Anzenburg, E., Yano, J., Kisielowski, C. & Gregoire, J. M. Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, DOI: 10.1002/aenm.201402307 (2015).
  • Han, L. H. et al. Gradient dopant profiling and spectral utilization of monolithic thin-film silicon photoelectrochemical tandem devices for solar water splitting. Journal of Materials Chemistry A 3(8) 4155-4162, DOI: 10.1039/c4ta05523c (2015).
  • Helms, B. A. et al. Colloidal Nanocrystal Frameworks. Advanced Materials, DOI: 10.1002/adma.201500127 (2015).
  • Helveg, S. et al. Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity. Micron 68, 176-185, DOI: 10.1016/j.micron.2014.07.009 (2015).
  • Hettick, M. et al. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes. J. Phys. Chem. Lett. 6. 2177-2182, DOI: 10.1021/acs.jpclett.5b00744 (2015).
  • Hu, S. et al. Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators. Journal of Physical Chemistrty C, 119(43), pp 24201-24228, DOI: 10.1021/acs.jpcc.5b05976 (2015).
  • Huang, Y., Nielsen, R. J., Goddard, W. A. & Soriaga, M. P. The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS2. Journal of the American Chemical Society,DOI: 10.1021/jacs.5b03329 (2015).
  • Huang, Z. et al. Atomic Force Microscopy for Solar Fuels Research: An Introductory Review. Energy and Environment Focus 4(4), 260-277, DOI: 10.1166/eef.2015.1180 (2015).
  • Javier, A. et al. A DEMS Study of the Reduction of CO2, CO, and HCHO Pre-Adsorbed on Cu Electrodes: Empirical Inferences on the CO2RR Mechanism. Electrocatalysis, 1-5, DOI: 10.1007/s12678-015-0246-1 (2015).
  • Javier, A. et al. Overlayer Au-on-W Near-Surface Alloy for the Selective Electrochemical Reduction of CO2to Methanol: Empirical (DEMS) Corroboration of a Computational (DFT) Prediction. Electrocatalysis, DOI: 10.1007/s12678-015-0276-8 (2015).
  • Jiang, Y. et al. The evolution of cyclopropenium ions into functional polyelectrolytes. Nature Communications, 6, 5950, DOI: 10.1038/ncomms6950 (2015).
  • Jones, R. J. R. et al. Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts. ACS Combinatorial Science 17, 71-75, DOI: 10.1021/co500148p (2015).
  • Jung, S. et al. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. Journal of Materials Chemistry A, DOI: 10.1039/C5TA07586F  (2015).
  • Jurss, J. W. et al. Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water. Chemical Science, 6, 4954-4972, DOI: 10.1039/C5SC01414J (2015).
  • Kisielowski, C. et al. Instrumental requirements for the detection of electron beam-induced object excitations at the single atom level in high-resolution transmission electron microscopy. Micron 68, 186-193, DOI: 10.1016/j.micron.2014.07.010 (2015).
  • Klaus, S. et al. Experimental and Computational Evidence of Highly-Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media. ChemElectroChem, DOI: 10.1002/celc.201500364 (2015).
  • Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L. & Bell, A. T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b00105 (2015).
  • Klaus, S., Louie, M. W., Trotochaud, L. & Bell, A. T. Role of Catalyst Preparation on the Electrocatalytic Activity of Ni1−xFexOOH for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C 119(32), 18303-18316, DOI: 10.1021/acs.jpcc.5b04776 (2015).
  • Kuang, Y. et al. Enhancement of the performance of GaP solar cells by embedded In(N)P quantum dots. Nano Energy 15, 782-788, DOI: 10.1016/j.nanoen.2015.06.003 (2015).
  • Lam, Y. C., Nielsen, R. J., Gray, H. B. & Goddard, W. A. A Mn Bipyrimidine Catalyst Predicted To Reduce CO2 at Lower Overpotential. ACS Catalysis 5(4) 2521-2528, DOI: 10.1021/cs501963v (2015).
  • Li, Y. et al. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing. The Journal of Physical Chemistry Letters, DOI: 10.1021/jz502720a (2015).
  • Li, Y. P. et al. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-Performance Electrocatalytic Hydrogen Evolution. Acs Catalysis 5, 448-455, DOI: 10.1021/cs501635v (2015).
  • Lichterman, M. F. et al. Direct Observation of the Energetics at a Semiconductor/Liquid Junction byOperando X-ray Photoelectron Spectroscopy. Energy Environ. Sci., 2015, DOI: 10.1039/C5EE01014D(2015).
  • Lichterman, M. F. et al. Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation. Catalysis Today, DOI: 10.1016/j.cattod.2015.08.017 (2015)
  • Lilio, A. M. et al. Incorporation of pendant bases into Rh(diphosphine)2 complexes: Synthesis, thermodynamic studies, and catalytic CO2 hydrogenation activity of [Rh(P2N2)2]+ complexes. Journal of the American Chemical Society, DOI: 10.1021/jacs.5b04291 (2015).
  • Lin, Y. et al. Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes. Journal of Physical Chemistry C 119(5), 2308-2313, DOI: 10.1021/jp5107313 (2015).
  • Liu, R. et al. Tuning redox potentials of CO2 reduction catalysts for carbon photofixation by Si nanowires. Science China Materials, 58(7), 515-520, DOI: 10.1007/s40843-015-0068-8 (2015).
  • Liu, R. A. et al. Low Temperature Synthesis of Electrochemical Active Pt Nanoparticles and Thin Films by Atomic Layer Deposition on Si(111) and Glassy Carbon Surfaces. Thin Solid Films, DOI: 10.1016/j.tsf.2015.04.018 (2015).
  • Liu, W. & Tilley, T. D. Sterically Controlled Functionalization of Carbon Surfaces with −C6H4CH2X (X = OSO2Me or N3) Groups for Surface Attachment of Redox-Active Molecules. Langmuir, DOI: 10.1021/la503796z (2015).
  • Loiudice, A. et al. Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals. Nano Letters (2015), DOI: 10.1021/acs.nanolett.5b03871(2015).
  • Loiudice, A. et al. Bandgap Tunability in Sb-Alloyed BiVO4 Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications. Advanced Materials, DOI: 10.1002/adma.201502361 (2015).
  • Luca, O. R. et al. Catalysis by electrons and holes: formal potential scales and preparative organic electrochemistry. Organic Chemistry Frontiers, DOI: 10.1039/C5QO00075K (2015).
  • Luca, O. R. & Fenwick, A. Q. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2 – The reduction chemistry of carboxylic acids and derivatives as bent CO2surrogates. Journal of Photochemistry and Photobiology B: Biology 152(A), 26-42, DOI: 10.1016/j.jphotobiol.2015.04.015 (2015).
  • Luca, O. R., McCrory, C. C. L., Dalleska, N. F. & Koval, C. A. The Selective Electrochemical Conversion of Preactivated CO2 to Methane. Journal of The Electrochemical Society, 162(7), H473-476, DOI: 10.1149/2.0371507jes (2015).
  • Lucht, K. P. & Mendoza-Cortes, J. L. Birnessite: A Layered Manganese Oxide To Capture Sunlight for Water-Splitting Catalysis. The Journal of Physical Chemistry C 119 (40), 22838-22846, DOI: 10.1021/acs.jpcc.5b07860 (2015).
  • Lum, Y. et al. Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity. ACS Catalysis, DOI: 10.1021/acscatal.5b02399 (2015)
  • Lynch, J. et al. Substitutional or Interstitial Site-Selective Nitrogen Doping in TiO2 Nanostructures. The Journal of Physical Chemistry C, 119(13), 7443-7452, DOI: 10.1021/jp512775s (2015).
  • Ma, J., Wang, Z. & Wang, L.-W. Interplay between plasmon and single-particle excitations in a metal nanocluster. Nature Communications, DOI: 10.1038/ncomms10107 (2015).
  • Ma, J. & Wang, L. W. Nanoscale Charge Localization Induced by Random Orientations of Organic Molecules in Hybrid Perovskite CH3NH3PbI3. Nano Letters 15, 248-253, DOI: 10.1021/nl503494y (2015).
  • Malacrida, P. et al. Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 28121-28128, DOI: 10.1039/C5CP00283D (2015).
  • May, M. M. et al. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nature Communications, DOI: 10.1038/ncomms9286 (2015).
  • McCrory, C. C. L. et al. Benchmarking HER and OER Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society, DOI: 10.1021/ja510442p (2015).
  • McDowell, M. T. et al. The Influence of Structure and Processing on the Behavior of TiO2 Protective Layers for Stabilization of n-Si/TiO2/Ni Photoanodes for Water Oxidation. ACS Applied Materials & Interfaces,DOI: 10.1021/acsami.5b00379 (2015).
  • Mitrovic, S. et al. Colorimetric Screening for High-Throughput Discovery of Light Absorbers. ACS Combinatorial Science, DOI: 10.1021/co500151u (2015).
  • Mitrovic, S. et al. High-throughput on-the-fly scanning ultraviolet-visible dual-sphere spectrometer. Review of Scientific Instruments 86, 5, DOI: 10.1063/1.4905365 (2015).
  • Nielander, A. C., Shaner, M., Papadantonakis, K. M., Francis, S. A. & Lewis, N. A Taxonomy for Solar Fuels Generators. Energy & Environmental Science, DOI: 10.1039/C4EE02251C (2015).
  • Niu, K.-Y. et al. Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser–Chemical Route. Nano Letters, DOI: 10.1021/acs.nanolett.5b00026 (2015).
  • Petzetakis, N. et al. Membranes with artificial free-volume for biofuel production. Nature Communications 6, 7529, DOI: 10.1038/ncomms8529 (2015).
  • Pham, H. H. & Wang, L. W. Electronic structures and current conductivities of B, C, N and F defects in amorphous titanium dioxide. Physical Chemistry Chemical Physics 17(17) 11908-11913, DOI: 10.1039/c5cp00890e (2015).
  • Pham, H. H. & Wang, L. W. Oxygen vacancy and hole conduction in amorphous TiO2. Physical Chemistry Chemical Physics 17(1), 541-550, DOI: 10.1039/c4cp04209c (2015).
  • Pham, H. H., Barkema, G. T. & Wang, L.-W. DFT+U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS, Physical Chemistry Chemical Physics, 17, 26270-26276, DOI: 10.1039/C5CP04623H (2015).
  • Ping, Y., Galli, G. & Goddard, W. A. Electronic Structure of IrO2: The Role of the Metal d Orbitals. The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b00861 (2015).
  • Ping, Y., Goddard, W. A. & Galli, G. A. Energetics and solvation effects at the photoanode-catalyst interface: Ohmic contact versus Schottky barrier. Journal of the American Chemical Society, DOI: 10.1021/jacs.5b00798 (2015).
  • Ping, Y., Sundararaman, R. & Goddard, W. A. Solvation effects on the band edge positions of photocatalysts from first principles. Physical Chemistry Chemical Physics, DOI: 10.1039/C5CP05740J(2015).
  • Plymale, N. T., Kim, Y.-G., Soriaga, M. P., Brunschwig, B. S. & Lewis, N. S. Synthesis, Characterization, and Reactivity of Ethynyl- and Propynyl-Terminated Si(111) Surfaces. The Journal of Physical Chemistry C,DOI: 10.1021/acs.jpcc.5b05028 (2015).
  • Popczun, E. et al. Highly Branched Cobalt Phosphide Nanostructures for Hydrogen-Evolution Electrocatalysis. Journal of Materials Chemistry A, DOI: 10.1039/C4TA06642A (2015).
  • Schwarz, K. A. et al. Formic acid oxidation on platinum: a simple mechanistic study. Physical Chemistry Chemical Physics, 17, 20805-20813, DOI: 10.1039/C5CP03045E (2015).
  • Shaner, M. R., Hu, S., Sun, K. & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O-2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy & Environmental Science 8, 203-207, DOI: 10.1039/c4ee03012e (2015).
  • Shaner, M. R., McKone, J. R., Gray, H. B. & Lewis, N. S. Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution. Energy & Environmental Science, DOI: 10.1039/C5EE01076D (2015).
  • Shinde, A. et al. High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis, DOI: 10.1007/s12678-014-0237-7 (2015).
  • Shinde, A., Guevarra, D., Haber, J. A., Jin, J. & Gregoire, J. M. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements. J. Mater. Res., DOI: 10.1557/jmr.2014.296 (2015).
  • Sieh, D., Lacy, D. C., Peters, J. C. & Kubiak, C. P. Reduction of CO2 by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal–Ligand Binding of CO2. Chemistry – A European Journal, DOI: 10.1002/chem.201500463 (2015).
  • Singh, M. R. & Bell, A. T. Design of an artificial photosynthetic system for production of alcohols in high concentration from CO2. Energy & Environmental Science, DOI: 10.1039/C5EE02783G (2015).
  • Singh, M. R., Clark, E. L. & Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Physical Chemistry Chemical Physics 17, 18924-18936, DOI: 10.1039/C5CP03283K (2015).
  • Singh, M. R., Clark, E. L. & Bell, A. T. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels. PNAS (2015), DOI: 10.1073/pnas.1519212112 (2015).
  • Singh, M. R., Papadantonakis, K. M., Xiang, C. & Lewis, N. S. An Electrochemical Engineering Assessment of the Operational Conditions and Constraints for Solar-Driven Water-Splitting Systems at Near-Neutral pH. Energy & Environmental Science, DOI: 10.1039/C5EE01721A (2015).
  • Smith, W. A. et al. Interfacial Band-Edge Energetics for Solar Fuels Production. Energy & Environmental Science, DOI: 10.1039/C5EE01822F (2015).
  • Soriaga, M. P. et al. Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis. Surface Science 631, 285-294, DOI: 10.1016/j.susc.2014.06.028 (2015).
  • Sun, J. et al. Low-Temperature Solution-Phase Growth of Silicon and Silicon-Containing Alloy Nanowires. Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b08289 (2015).
  • Sun, K. et al. Sputtered NiOx Films for Stabilization of p+n-InP Photoanodes for Solar-Driven Water Oxidation. Advanced Energy Materials, DOI: 10.1002/aenm.201402276 (2015).
  • Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. PNAS 112, 12, 3612–3617, DOI: 10.1073/pnas.1423034112(2015).
  • Sun, K. et al. Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes. The Journal of Physical Chemistry Letters 6, 592-598, DOI: 10.1021/jz5026195 (2015).
  • Sundararaman, R. & Goddard, W. A. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. The Journal of Chemical Physics 142, 064107, DOI: 10.1063/1.4907731(2015).
  • Suram, S. K. et al. Combinatorial thin film composition mapping using three dimensional deposition profiles. Review of Scientific Instruments 86, 033904-1–6, DOI: 10.1063/1.4914466 (2015).
  • Suram, S. K., Haber, J. A., Jin, J. & Gregoire, J. M. Generating Information Rich High-Throughput Experimental Materials Genomes using Functional Clustering via Multi-Tree Genetic Programming and Information Theory. ACS Combinatorial Science, DOI: 10.1021/co5001579 (2015).
  • Suseno, S. et al. Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts. Chemistry: a European Journal 21, 13420-13430, DOI: 10.1002/chem.201501104 (2015).
  • Sutter-Fella, C. M. et al. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites. Nano Letters, DOI: 10.1021/acs.nanolett.5b04884 (2015).
  • Swierk, J. R. et al. An Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (oxy)hydroxide Catalysts. Journal of Physical Chemistry C, 2015, DOI: 10.1021/acs.jpcc.5b05861(2015).
  • Van Allsburg, K., Anzenberg, E., Drisdell, W., Yano, J. & Tilley, T. D. Oxygen-Atom Transfer Chemistry and Thermolytic Properties of a Di-tert-butylphosphate-Ligated Mn4O4 Cubane. Chemistry - A European Journal, DOI: 10.1002/chem.201406114 (2015).
  • Van Dyck, D., Lobato, I., Chen, F. R. & Kisielowski, C. Do you believe that atoms stay in place when you observe them in HREM? Micron 68, 158-163, DOI: 10.1016/j.micron.2014.09.003 (2015).
  • Velazquez, J. M. et al. A Scanning Probe Investigation of the Role of Surface Motifs in the Behavior of p–WSe2 Photocathodes. Energy & Environmental Science, DOI: 10.1039/C5EE02530C (2015).
  • Verlage, E. et al. A Monolithically Integrated, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting System Based on Active, Stable Earth-Abundant Electrocatalysts in Conjunction with Tandem III-V Light Absorbers Protected by Amorphous TiO2 Films. Energy & Environmental Science, DOI: 10.1039/C5EE01786F (2015).
  • Walczak, K. et al. Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System. ChemSusChem 8, 544-551, DOI: 10.1002/cssc.201402896 (2015).
  • Wong, K. T. et al. Synthesis and Characterization of Atomically Flat Methyl-Terminated Ge(111) Surfaces. Journal of the American Chemical Society DOI: 10.1021/jacs.5b03339 (2015).
  • Xiao, H. et al. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). Journal of American Chemical Society, DOI: 10.1021/jacs.5b11390  (2015).
  • Yan, Q. et al. Mn2V2O7: An Earth Abundant Light Absorber for Solar Water Splitting. Advanced Energy Materials, DOI: 10.1002/aenm.201401840 (2015).
  • Yang, X. G. et al. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Research 8, 56-81, DOI: 10.1007/s12274-014-0645-2 (2015).
  • You, B. et al. Bimetal–Organic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction. ACS Catalysis, 5(12), pp. 7068-7076, DOI: 10.1021/acscatal.5b02325 (2015).
  • Yu, J. et al. First-principles study of electronic structure and photocatalytic properties of MnNiO3 as an alkaline oxygen-evolution photocatalyst. Chemical Communications 51, 2867-2870, DOI: 10.1039/C4CC08111K (2015).
  • Zee, D. Z. et al. Metal–Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen. Accounts of Chemical Research, 48 (7), 2027–2036, DOI: 10.1021/acs.accounts.5b00082(2015).
  • Zhang, M. et al. Visible Light Sensitized CO2 Activation by the Tetraaza [CoIIN4H(MeCN)]2+ Complex Investigated by FT-IR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry C, DOI: 10.1021/jp5127738 (2015).
  • Zhou, L. et al. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides. Journal of Materials Research, DOI: 10.1557/jmr.2015.140 (2015).
  • Zhou, L. et al. High Throughput Discovery of Solar Fuels Photoanodes in the CuO−V2O5 System. Advanced Energy Materials, DOI: 10.1002/aenm.201500968 (2015).
  • Zhou, X. et al. Interface Engineering of the Photoelectrochemical Performance of Ni-Oxide-Coated n-Si Photoanodes by Atomic-Layer Deposition of Ultrathin Films of Cobalt Oxide. Energy & Environmental Science, DOI: 10.1039/C5EE01687H (2015).
  • Zhu, Y. et al. Location of Co and Ni Promoter Atoms in Multi-layer MoS2 Nanocrystals for Hydrotreating Catalysis. Catalysis Today, 261, pp 75-81, DOI: 10.1016/j.cattod.2015.08.053 (2015).

+ 2014

  • Alarcon-Llado, E. et al. BiVO4 thin film photoanodes grown by chemical vapor deposition. Physical Chemistry Chemical Physics 16, 1651-1657, DOI: 10.1039/c3cp53904k (2014).
  • Antunez, P. D. et al. Low Temperature Solution-Phase Deposition of SnS Thin Films. Chemistry of Materials 26, 5444-5446, DOI: 10.1021/cm503124u (2014).
  • Baricuatro, J. et al. Heterogenization of a Water-Insoluble Molecular Complex for Catalysis of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions. Electrocatalysis, 1-3, DOI: 10.1007/s12678-014-0200-7 (2014).
  • Baricuatro, J. H. et al. Structure and composition of Cu(hkl) surfaces exposed to O-2 and emersed from alkaline solutions: Prelude to UHV-EC studies of CO2 reduction at well-defined copper catalysts. Journal of Electroanalytical Chemistry 716, 101-105, DOI: 10.1016/j.jelechem.2013.10.001 (2014).
  • Battaglia, C. et al. Hole Selective MoOx Contact for Silicon Solar Cells. Nano Letters 14, 967-971, DOI: 10.1021/nl404389u (2014).
  • Berger, A. & Newman, J. An Integrated 1-Dimensional Model of a Photoelectrochemical Cell for Water Splitting. Journal of the Electrochemical Society 161, E3328-E3340, DOI: 10.1149/2.035408jes (2014).
  • Berger, A., Segalman, R. A. & Newman, J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell. Energy & Environmental Science 7, 1468-1476, DOI: 10.1039/c3ee43807d (2014).
  • Bruce, J. P. et al. Measurement of the Electrical Resistance of n-Type Si Microwire/p-Type Conducting Polymer Junctions for Use in Artificial Photosynthesis. Journal of Physical Chemistry C 118, 27742-27748,DOI: 10.1021/jp509211k (2014).
  • Cai, S. L. et al. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chemical Science 5, 4693-4700, DOI: 10.1039/c4sc02593h (2014).
  • Callejas, J. F. et al. Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. Acs Nano 8, 11101-11107, DOI: 10.1021/nn5048553 (2014).
  • Carim, A. I., Saadi, F. H., Soriaga, M. P. & Lewis, N. S. Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. Journal of Materials Chemistry A 2, 13835-13839,DOI: 10.1039/c4ta02611j (2014).
  • Cedeno, D. et al. Using Molecular Design to Control the Performance of Hydrogen-Producing Polymer-Brush-Modified Photocathodes. Journal of Physical Chemistry Letters 5, 3222-3226, DOI: 10.1021/jz5016394 (2014).
  • Chen, S. Y. & Wang, L. W. Double-hole-induced oxygen dimerization in transition metal oxides. Physical Review B 89, 6, DOI: 10.1103/PhysRevB.89.014109 (2014).
  • Chen, S. Y., Narang, P., Atwater, H. A. & Wang, L. W. Phase Stability and Defect Physics of a Ternary ZnSnN2 Semiconductor: First Principles Insights. Advanced Materials 26, 311-315, DOI: 10.1002/adma.201302727 (2014).
  • Chen, Y. K., Xiang, C. X., Hu, S. & Lewis, N. S. Modeling the Performance of an Integrated Photoelectrolysis System with 10 x Solar Concentrators. Journal of the Electrochemical Society 161, F1101-F1110, DOI: 10.1149/2.0751410jes (2014).
  • Chen, Y., Hu, S., Xiang, C. & Lewis, N. A Sensitivity Analysis to Assess the Relative Importance of Improvements in Electrocatalysts, Light Absorbers, and System Geometry on the Efficiency of Solar-Fuels Generators. Energy & Environmental Science, DOI: 10.1039/C4EE02314E (2014).
  • Cheng, M. J., Head-Gordon, M. & Bell, A. T. How to Chemically Tailor Metal-Porphyrin-Like Active Sites on Carbon Nanotubes and Graphene for Minimal Overpotential in the Electrochemical Oxygen Evolution and Oxygen Reduction Reactions. Journal of Physical Chemistry C 118, 29482-29491, DOI: 10.1021/jp507638v (2014).
  • Cooper, J. K. et al. Electronic Structure of Monoclinic BiVO4. Chemistry of Materials 26, 5365-5373, DOI: 10.1021/cm5025074 (2014).
  • Cotanda, P., Sudre, G., Modestino, M. A., Chen, X. C. & Balsara, N. P. High Anion Conductivity and Low Water Uptake of Phosphonium Containing Diblock Copolymer Membranes. Macromolecules 47, 7540-7547, DOI: 10.1021/ma501744w (2014).
  • Fenwick, A. Q., Gregoire, J. M. & Luca, O. R. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device. Journal of Photochemistry and Photobiology B: Biology, DOI: 10.1016/j.jphotobiol.2014.12.019 (2014).
  • Fong, H. & Peters, J. Hydricity of an Fe−H Species and Catalytic CO2 Hydrogenation. Inorganic Chemistry, DOI: 10.101021/9c502508p (2014).
  • Fountaine, K. T. & Atwater, H. A. Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si vertical bar WO3 microwires. Optics Express 22, A1453-A1461, DOI: 10.1364/oe.22.0a1453 (2014).
  • Fountaine, K. T., Kendall, C. G. & Atwater, H. A. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. Optics Express 22, A930-A940,DOI: 10.1364/oe.22.00a930 (2014).
  • Fountaine, K. T., Lewerenz, H. J. & Atwater, H. A. Interplay of light transmission and catalytic exchange current in photoelectrochemical systems. Applied Physics Letters 105, 3, DOI: 10.1063/1.4900612(2014).
  • Fountaine, K. T., Whitney, W. S. & Atwater, H. A. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes. Journal of Applied Physics 116, 6, DOI: 10.1063/1.4898758 (2014).
  • Grauer, D. C. & Alivisatos, A. P. Ligand Dissociation Mediated Charge Transfer Observed at Colloidal W18O49 Nanoparticle Interfaces. Langmuir 30, 2325-2328, DOI: 10.1021/la404019v (2014).
  • Gregoire, J. M. et al. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. Journal of Synchrotron Radiation 21, 1262-1268, DOI: 10.1107/s1600577514016488 (2014).
  • Haber, J. A. et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy & Environmental Science 7, 682-688, DOI: 10.1039/c3ee43683g (2014).
  • Haber, J. A. et al. High-Throughput Mapping of the Electrochemical Properties of (Ni-Fe-Co-Ce)O-x Oxygen-Evolution Catalysts. Chemelectrochem 1, 524-528, DOI: 10.1002/celc.201300229 (2014).
  • Haber, J. A., Guevarra, D., Jung, S. H., Jin, J. & Gregoire, J. M. Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni- La- Co- Ce Oxide Composition Space. Chemelectrochem 1, 1613-1617, DOI: 10.1002/celc.201402149 (2014).
  • Han, L. H. et al. Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells. Chemsuschem 7, 2832-2838, DOI: 10.1002/cssc.201402456 (2014).
  • Hsieh, C. H. et al. Redox active iron nitrosyl units in proton reduction electrocatalysis. Nature Communications 5, 8, DOI: 10.1038/ncomms4684 (2014).
  • Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005-1009, DOI: 10.1126/science.1251428 (2014).
  • Huang, Z. et al. Comparison between the measured and modeled hydrogen-evolution activity of Ni- or Pt-coated silicon photocathodes. International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2013.12.162 (2014).
  • Huang, Z., Xiang, C. & Lewis, N. S. Two 1 stories from the ISACS 12 conference: solarfuel devices and catalyst identification (editorial). EES, DOI: 10.1039/c3ee90043f (2014).
  • Javier, A. et al. C-H activation and metalation at electrode surfaces: 2,3-dimethyl-1,4-dihydroxybenzene on Pd(pc) and Pd(111) studied by TLE, HREELS and DFT. Dalton Transactions 43, 14798-14805, DOI: 10.1039/c4dt02137a (2014).
  • Jeon, J. et al. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters 5, 4285-4290, DOI: 10.1021/jz502197b (2014).
  • Jin, J. et al. An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy & Environmental Science 7, 3371-3380, DOI: 10.1039/c4ee01824a (2014).
  • Kim, Y. G. & Soriaga, M. P. Cathodic regeneration of a clean and ordered Cu(100)-(1 x 1) surface from an air-oxidized and disordered electrode: An operando STM study. Journal of Electroanalytical Chemistry 734, 7-9, DOI: 10.1016/j.jelechem.2014.09.010 (2014).
  • Kim, Y. G., Baricuatro, J. H., Javier, A., Gregoire, J. M. & Soriaga, M. P. The Evolution of the Polycrystalline Copper Surface, First to Cu(111) and Then to Cu(100), at a Fixed CO2RR Potential: A Study by Operand EC-STM. Langmuir 30, 15053-15056, DOI: 10.1021/la504445g (2014).
  • Krawicz, A., Cedeno, D. & Moore, G. F. Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination. Physical Chemistry Chemical Physics 16, 15818-15824, DOI: 10.1039/c4cp00495g (2014).
  • Lacy, D. C., McCrory, C. C. L. & Peters, J. C. Studies of Cobalt-Mediated Electrocatalytic CO2 Reduction Using a Redox-Active Ligand. Inorganic Chemistry 53, 4980-4988, DOI: 10.1021/ic403122j (2014).
  • Leenheer, A. J., Narang, P., Lewis, N. S. & Atwater, H. A. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. Journal of Applied Physics 115, 7, DOI: 10.1063/1.4870040 (2014).
  • Letko, C. S., Panetier, J. A., Head-Gordon, M. & Tilley, T. D. Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes. Journal of the American Chemical Society 136, 9364-9376, DOI: 10.1021/ja5019755 (2014).
  • Lewerenz, H. J. Semiconductor Surface Transformations for Photoelectrochemical Energy Conversion. Journal of the Electrochemical Society 161, H3117-H3129, DOI: 10.1149/2.0211413jes (2014).
  • Lewerenz, J. H. Self-Organization Phenomena in Photoelectrochemical Energy Conversion: Nanoemitter Solar Cells. Reviews in Advanced Sciences and Engineering 4, 1-11, DOI: 10.1166/rase.2014.1081(2014).
  • Lichterman, M. F. et al. Stabilization of n-cadmium telluride photoanodes for water oxidation to O-2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition. Energy & Environmental Science 7, 3334-3337, DOI: 10.1039/c4ee01914h (2014).
  • Lin, T. P. & Peters, J. C. Boryl-Metal Bonds Facilitate Cobalt/Nickel-Catalyzed Olefin Hydrogenation. Journal of the American Chemical Society 136, 13672-13683, DOI: 10.1021/ja504667f (2014).
  • Liu, R., Zheng, Z., Spurgeon, J. & Yang, X. G. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy & Environmental Science 7, 2504-2517, DOI: 10.1039/c4ee00450g (2014).
  • Liu, W. J., Sharp, I. D. & Tilley, T. D. Multifunctional Silicon Surfaces: Reaction of Dichlorocarbene Generated from Seyferth Reagent with Hydrogen-Terminated Silicon (111) Surfaces. Langmuir 30, 172-178, DOI: 10.1021/la403789a (2014).
  • Lobaccaro, P. et al. Electrodeposition of High-Purity Indium Thin Films and Its Application to Indium Phosphide Solar Cells. Journal of the Electrochemical Society 161, D794-D800, DOI: 10.1149/2.0821414jes (2014).
  • Ma, J. & Wang, L. W. The role of the isolated 6s states in BiVO4 on the electronic and atomic structures. Applied Physics Letters 105, 4, DOI: 10.1063/1.4900549 (2014).
  • May, M. M., Lewerenz, H. J. & Hannappel, T. Optical in Situ Study of InP(100) Surface Chemistry: Dissociative Adsorption of Water and Oxygen. Journal of Physical Chemistry C 118, 19032-19041, DOI: 10.1021/jp502955m (2014).
  • McDonald, M. B., Ardo, S., Lewis, N. S. & Freund, M. S. Use of Bipolar Membranes for Maintaining Steady-State pH Gradients in Membrane-Supported, Solar-Driven Water Splitting Michael. Chemsuschem 7, 3021-3027, DOI: 10.1002/cssc.201402288 (2014).
  • McDowell, M. T. et al. Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO2/Ni Coatings. Journal of Physical Chemistry C 118, 19618-19624, DOI: 10.1021/jp506133y (2014).
  • McEnaney, J. M. et al. Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution. Chemistry of Materials 26, 4826-4831, DOI: 10.1021/cm502035s (2014).
  • McEnaney, J. M. et al. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chemical Communications 50, 11026-11028, DOI: 10.1039/c4cc04709e (2014).
  • McKone, J. R., Lewis, N. S. & Gray, H. B. Will Solar-Driven Water-Splitting Devices See the Light of Day? Chemistry of Materials 26, 407-414, DOI: 10.1021/cm4021518 (2014).
  • Modestino, M. A. et al. Robust production of purified H-2 in a stable, self-regulating, and continuously operating solar fuel generator. Energy & Environmental Science 7, 297-301, DOI: 10.1039/c3ee43214a(2014).
  • Narang, P. et al. Bandgap Tunability in Zn(Sn,Ge)N-2 Semiconductor Alloys. Advanced Materials 26, 1235-1241, DOI: 10.1002/adma.201304473 (2014).
  • Pala, R. A., Leenheer, A. J., Lichterman, M., Atwater, H. A. & Lewis, N. S. Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes. Energy & Environmental Science 7, 3424-3430, DOI: 10.1039/c4ee01580k (2014).
  • Pesenson, M. Z., Suram, S. K. & Gregoire, J. M. Statistical Analysis and Interpolation of Compositional Data in Materials Science. ACS Combinatorial Science, DOI: 10.1021/co5001458 (2014).
  • Rivest, J. B., Li, G., Sharp, I. D., Neaton, J. B. & Milliron, D. J. Phosphonic Acid Adsorbates Tune the Surface Potential of TiO2 in Gas and Liquid Environments. Journal of Physical Chemistry Letters 5, 2450-2454,DOI: 10.1021/jz501050f (2014).
  • Saadi, F. H. et al. CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. Journal of Physical Chemistry C 118, 29294-29300, DOI: 10.1021/jp5054452 (2014).
  • Saadi, F. H. et al. Operand Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction. Acs Catalysis 4, 2866-2873, DOI: 10.1021/cs500412u (2014).
  • Sanabria-Chinchilla, J. et al. Immobilization-Enabled Proton Reduction Catalysis by a Di-iron Hydrogenase Mimic. Electrocatalysis 5, 5-7, DOI: 10.1007/s12678-013-0157-y (2014).
  • Sanchez Casalongue, H. G. et al. In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction. Angewandte Chemie-International Edition 53, 7169-7172, DOI: 10.1002/anie.201402311 (2014).
  • Sanchez Casalongue, H. G. et al. Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C 118, 29252-29259, DOI: 10.1021/jp505394e (2014).
  • Sathre, R. et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy & Environmental Science 7, 3264-3278, DOI: 10.1039/c4ee01019a (2014).
  • Shaffer, D. W. et al. Reactivity of a Series of Isostructural Cobalt Pincer Complexes with CO2, CO, and H+. Inorganic Chemistry 53, 13031-13041, DOI: 10.1021/ic5021725 (2014).
  • Shaner, M. R. et al. Photoelectrochemistry of core-shell tandem junction n-p(+)-Si/n-WO3 microwire array photoelectrodes. Energy & Environmental Science 7, 779-790, DOI: 10.1039/c3ee43048k (2014).
  • Shinde, A. et al. High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis, 1-8, DOI: 10.1007/s12678-014-0237-7 (2014).
  • Singh, M. R., Stevens, J. C. & Weber, A. Z. Design of Membrane-Encapsulated Wireless Photoelectrochemical Cells for Hydrogen Production. Journal of the Electrochemical Society 161, E3283-E3296, DOI: 10.1149/2.033408jes (2014).
  • Spurgeon, J. M., Velazquez, J. M. & McDowell, M. T. Improving O-2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Physical Chemistry Chemical Physics 16, 3623-3631, DOI: 10.1039/c3cp55527e (2014).
  • Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature Communications 5, 8, DOI: 10.1038/ncomms6788 (2014).
  • Supplie, O. et al. Materials for light-induced water splitting: In situ controlled surface preparation of GaPN epilayers grown lattice-matched on Si(100). Journal of Applied Physics 115, 18, DOI: 10.1063/1.4869121(2014).
  • Velazquez, J. M. et al. Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils. Journal of Electroanalytical Chemistry 716, 45-48, DOI: 10.1016/j.jelechem.2013.11.030 (2014).
  • Warren, E. L., Atwater, H. A. & Lewis, N. S. Silicon Microwire Arrays for Solar Energy-Conversion Applications. Journal of Physical Chemistry C 118, 747-759, DOI: 10.1021/jp406280x (2014).
  • Williams, T. E. et al. NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices. Journal of Materials Chemistry C 2, 3328-3335, DOI: 10.1039/c3tc32247e (2014).
  • Xiang, C. et al. High-Throughput Bubble Screening Method for Combinatorial Discovery of Electrocatalysts for Water Splitting. ACS Combinatorial Science 16, 47-52, DOI: 10.1021/co400151h(2014).
  • Xiang, C. et al. Mapping Quantum Yield for (Fe–Zn–Sn–Ti)Ox Photoabsorbers Using a High Throughput Photoelectrochemical Screening System. ACS Combinatorial Science 16, 120-127, DOI: 10.1021/co400081w (2014).
  • Xiao, H. & Goddard, W. A. Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se-2/CdS) solar cell interfaces and implications for improving performance. Journal of Chemical Physics 141, 7, DOI: 10.1063/1.4893985 (2014).
  • Yang, J. H. et al. Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces. Journal of the American Chemical Society 136, 6191-6194,DOI: 10.1021/ja501513t (2014).
  • Zhu, Y. et al. Visualizing the Stoichiometry of Industrial-Style Co-Mo-S Catalysts with Single-Atom Sensitivity. Angewandte Chemie International Edition, DOI: 10.1002/anie.201405690 (2014).

+ 2013

  • Alayoglu, S. et al. Pt-Mediated Reversible Reduction and Expansion of CeO2 in Pt Nanoparticle/Mesoporous CeO2 Catalyst: In Situ X-ray Spectroscopy and Diffraction Studies under Redox (H-2 and O-2) Atmospheres. Journal of Physical Chemistry C 117, 26608-26616, DOI: 10.1021/jp407280e (2013).
  • Bajdich, M., Garcia-Mota, M., Vojvodic, A., Norskov, J. K. & Bell, A. T. Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society 135, 13521-13530, DOI: 10.1021/ja405997s (2013).
  • Baricuatro, J. H., Soto, J. C., Cummins, K. D. & Soriaga, M. P. High-resolution electron energy loss spectroscopy of anions chemisorbed on electrode surfaces: The effect of counter cations. Electrochem. Commun. 27, 176-179, DOI: 10.1016/j.elecom.2012.11.005 (2013).
  • Chen, L. et al. Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C 117, 21635-21642, DOI: 10.1021/jp406019r (2013).
  • Chi, C. Y. et al. Twin-Free GaAs Nanosheets by Selective Area Growth: Implications for Defect-Free Nanostructures. Nano Letters 13, 2506-2515, DOI: 10.1021/nl400561j (2013).
  • Chmielowiec, B. et al. Molecular catalysis that transpires only when the complex is heterogenized: studies of a hydrogenase complex surface-tethered on polycrystalline and (111)-faceted gold by EC, PM-FT-IRRAS, HREELS, XPS and STM. Journal of Electroanalytical Chemistry, DOI: 10.1016/j.jelechem.2013.12.025 (2013).
  • Coridan, R. H., Shaner, M., Wiggenhorn, C., Brunschwig, B. S. & Lewis, N. S. Electrical and Photoelectrochemical Properties of WO3/Si Tandem Photoelectrodes. Journal of Physical Chemistry C 117, 6949-6957, DOI: 10.1021/jp311947x (2013).
  • Friebel, D. et al. On the chemical state of Co oxide electrocatalysts during alkaline water splitting. Physical Chemistry Chemical Physics 15, 17460-17467, DOI: 10.1039/c3cp52981a (2013).
  • Gorlin, Y. et al. In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. Journal of the American Chemical Society 135, 8525-8534, DOI: 10.1021/ja3104632 (2013).
  • Gregoire, J. M. et al. Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts. Journal of the Electrochemical Society 160, F337-F342, DOI: 10.1149/2.035304jes(2013).
  • Gregoire, J. M., Xiang, C. X., Liu, X. N., Marcin, M. & Jin, J. Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Review of Scientific Instruments 84, 6, DOI: 10.1063/1.4790419 (2013).
  • Hannappel, T., May, M. M. & Lewerenz, H. J. in "Photoelectrochemical Water Splitting: Materials, Processes and Architectures" (eds H. J. Lewerenz & L. M. Peter) Ch. Chapter 9, (The Royal Society of Chemistry, 2013).
  • Haussener, S., Hu, S., Xiang, C. X., Weber, A. Z. & Lewis, N. S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy & Environmental Science 6, 3605-3618, DOI: 10.1039/c3ee41302k (2013).
  • Hu, S. et al. Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy & Environmental Science 6, 1879-1890, DOI: 10.1039/c3ee40243f (2013).
  • Hu, S., Xiang, C. X., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy & Environmental Science 6, 2984-2993, DOI: 10.1039/c3ee40453f (2013).
  • Kashif, M. K. et al. Stable Dye-Sensitized Solar Cell Electrolytes Based on Cobalt(II)/(III) Complexes of a Hexadentate Pyridyl Ligand. Angewandte Chemie-International Edition 52, 5527-5531, DOI: 10.1002/anie.201300070 (2013).
  • Kisielowski, C. et al. Real-time sub-Angstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene. Physical Review B 88, 12, DOI: 10.1103/PhysRevB.88.024305 (2013).
  • Krawicz, A. et al. Photofunctional Construct That Interfaces Molecular Cobalt-Based Catalysts for H-2 Production to a Visible-Light-Absorbing Semiconductor. Journal of the American Chemical Society 135, 11861-11868, DOI: 10.1021/ja404158r (2013).
  • Letilly, M., Skorupska, K. & Lewerenz, H. J. Initial Phase of Photoelectrochemical Conditioning of Silicon in Alkaline Media: Surface Chemistry and Topography. Journal of Physical Chemistry C 117, 16381-16391,DOI: 10.1021/jp401853p (2013).
  • Lewerenz, H. J. in Encyclopedia of Applied Electrochemistry" (eds R. F. Savinell, K. I. Ota, & G. Kreysa) 1893-1924 (Spinger Heidelberg, 2013).
  • Lewerenz, H. J. & Peter, L. M. in "Photoelectrochemical Water Splitting: Materials, Processes and Architectures" (eds H. J. Lewerenz & L. M. Peter) Chapter 16, (The Royal Society of Chemistry, 2013).
  • Lewerenz, H. J. On the Structure of the Helmholtz Layer and its Implications on Electrode Kinetics. Electrochemical Society Transactions 50, 3-20, DOI: 10.1149/05052.0003ecst (2013).
  • Lewis, N. S. An integrated, systems approach to the development of solar-fuels generators. The Electrochemical Society, Interface (2013).
  • Lichterman, M. F. et al. Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition. Journal of Physical Chemistry Letters 4, 4188-4191, DOI: 10.1021/jz4022415 (2013).
  • Lin, T. P. & Peters, J. C. Boryl-Mediated Reversible H-2 Activation at Cobalt: Catalytic Hydrogenation, Dehydrogenation, and Transfer Hydrogenation. Journal of the American Chemical Society 135, 15310-15313, DOI: 10.1021/ja408397v (2013).
  • Lin, Y. J. et al. Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production. Nano Letters 13, 5615-5618, DOI: 10.1021/nl403265k (2013).
  • Louie, M. W. & Bell, A. T. An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society 135, 12329-12337, DOI: 10.1021/ja405351s (2013).
  • McCrory, C. C. L., Jung, S. H., Peters, J. C. & Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 135, 16977-16987, DOI: 10.1021/ja407115p (2013).
  • McKone, J. R., Grimm, R. L. & Lewis, N. S. in Photoelectrochemical Water Splitting: Materials, Processes and Architecture (eds H. J. Lewerenz & L. M. Peter) Chapter 3, (Royal Society of Chemistry, 2013).
  • McKone, J. R., Pieterick, A. P., Gray, H. B. & Lewis, N. S. Hydrogen Evolution from Pt/Ru-Coated p-Type WSe2 Photocathodes. Journal of the American Chemical Society 135, 223-231, DOI: 10.1021/ja308581g(2013).
  • Modestino, M. A. et al. Integrated microfluidic test-bed for energy conversion devices. Physical Chemistry Chemical Physics 15, 7050-7054, DOI: 10.1039/c3cp51302e (2013).
  • Modestino, M. A. et al. Self-Assembly and Transport Limitations in Confined Nafion Films. Macromolecules 46, 867-873, DOI: 10.1021/ma301999a (2013).
  • Moore, G. F. & Sharp, I. D. A Noble-Metal-Free Hydrogen Evolution Catalyst Grafted to Visible Light-Absorbing Semiconductors. Journal of Physical Chemistry Letters 4, 568-572, DOI: 10.1021/jz400028z(2013).
  • Nippe, M. et al. Catalytic proton reduction with transition metal complexes of the redox-active ligand bpy2PYMe. Chemical Science 4, 3934-3945, DOI: 10.1039/c3sc51660a (2013).
  • Sampson, M. D. et al. Direct observation of the reduction of carbon dioxide by rhenium bipyridine catalysts. Energy & Environmental Science 6, 3748-3755, DOI: 10.1039/c3ee42186d (2013).
  • Sanabria-Chinchilla, J., Chen, X. L., Li, D. & Soriaga, M. P. Chemisorption-Isotherm Measurements at Electrode Surfaces by Quantitative High-Resolution Electron Energy Loss Spectroscopy. Electrocatalysis 4, 101-103, DOI: 10.1007/s12678-013-0125-6 (2013).
  • Sanchez Casalongue, H. et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Communications 4, 6, DOI: 10.1038/ncomms3817 (2013).
  • Schneider, Y. et al. Ionic Conduction in Nanostructured Membranes Based on Polymerized Protic Ionic Liquids. Macromolecules 46, 1543-1548, DOI: 10.1021/ma3024624 (2013).
  • Shaner, M. R., Fountaine, K. T. & Lewerenz, H. J. Current-voltage characteristics of coupled photodiode-electrocatalyst devices. Applied Physics Letters 103, 4, DOI: 10.1063/1.4822179 (2013).
  • Sudre, G., Inceoglu, S., Cotanda, P. & Balsara, N. P. Influence of Bound Ion on the Morphology and Conductivity of Anion-Conducting Block Copolymers. Macromolecules 46, 1519-1527, DOI: 10.1021/ma302357k (2013).
  • Thoi, V. S., Sun, Y. J., Long, J. R. & Chang, C. J. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev. 42, 2388-2400, DOI: 10.1039/c2cs35272a (2013).
  • Ugeda, M. M. et al. Adsorption and Stability of pi-Bonded Ethylene on GaP(110). Journal of Physical Chemistry C 117, 26091-26096, DOI: 10.1021/jp408539x (2013).
  • Wang, W. C., Chen, S. Y., Yang, P. X., Duan, C. G. & Wang, L. W. Si:WO3 heterostructure for Z-scheme water splitting: an ab initio study. Journal of Materials Chemistry A 1, 1078-1085, DOI: 10.1039/c2ta00441k (2013).
  • Xiang, C. X., Chen, Y. K. & Lewis, N. S. Modeling an integrated photoelectrolysis system sustained by water vapor. Energy & Environmental Science 6, 3713-3721, DOI: 10.1039/c3ee42143k (2013).
  • Yu, M., Doak, P., Tamblyn, I. & Neaton, J. B. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces. Journal of Physical Chemistry Letters 4, 1701-1706, DOI: 10.1021/jz400601t (2013).
  • Zhai, P. et al. Net primary energy balance of a solar-driven photoelectrochemical water-splitting device. Energy & Environmental Science 6, 2380-2389, DOI: 10.1039/c3ee40880a (2013).

+ 2012

  • Chen, S. Y. & Wang, L. W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chemistry of Materials 24, 3659-3666, DOI: 10.1021/cm302533s(2012).
  • Chen, S. Y., Wang, L. W., Walsh, A., Gong, X. G. & Wei, S. H. Abundance of Cu-Zn + Sn-Zn and 2Cu(Zn) + Sn-Zn defect clusters in kesterite solar cells. Applied Physics Letters 101, 4, DOI: 10.1063/1.4768215(2012).
  • Diamond, A. M. et al. Copper-alloyed ZnS as a p-type transparent conducting material. Phys. Status Solidi A-Appl. Mat. 209, 2101-2107, DOI: 10.1002/pssa.201228181 (2012).
  • Garcia-Mota, M. et al. Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides. Journal of Physical Chemistry C 116, 21077-21082, DOI: 10.1021/jp306303y (2012).
  • Haussener, S. et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy & Environmental Science 5, 9922-9935, DOI: 10.1039/c2ee23187e (2012).
  • Hoarfrost, M. L. & Segalman, R. A. Conductivity Scaling Relationships for Nanostructured Block Copolymer/Ionic Liquid Membranes. Acs Macro Letters 1, 937-943, DOI: 10.1021/mz300241g (2012).
  • Hoarfrost, M. L., Tyagi, M., Segalman, R. A. & Reimer, J. A. Proton Hopping and Long-Range Transport in the Protic Ionic Liquid [Im][TFSI], Probed by Pulsed-Field Gradient NMR and Quasi-Elastic Neutron Scattering. Journal of Physical Chemistry B 116, 8201-8209, DOI: 10.1021/jp3044237 (2012).
  • Karunadasa, H. I. et al. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation. Science 335, 698-702, DOI: 10.1126/science.1215868 (2012).
  • Kusoglu, A., Modestino, M. A., Hexemer, A., Segalman, R. A. & Weber, A. Z. Subsecond Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-ray Scattering. Acs Macro Letters 1, 33-36, DOI: 10.1021/mz200015c (2012).
  • Lee, M. H. et al. p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production. Angewandte Chemie-International Edition 51, 10760-10764, DOI: 10.1002/anie.201203174 (2012).
  • Leenheer, A. J. & Atwater, H. A. Imaging Water-Splitting Electrocatalysts with pH-Sensing Confocal Fluorescence Microscopy. Journal of the Electrochemical Society 159, H752-H757, DOI: 10.1149/2.022209jes (2012).
  • Modestino, M. A., Kusoglu, A., Hexemer, A., Weber, A. Z. & Segalman, R. A. Controlling Nafion Structure and Properties via Wetting Interactions. Macromolecules 45, 4681-4688, DOI: 10.1021/ma300212f(2012).
  • Yeo, B. S. & Bell, A. T. In Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of Physical Chemistry C 116, 8394-8400, DOI: 10.1021/jp3007415 (2012).

+ 2011

  • Chen, S. Y. & Wang, L. W. Intrinsic defects and electronic conductivity of TaON: First-principles insights. Applied Physics Letters 99, 222103, DOI: 10.1063/1.3664346 (2011).
  • Spurgeon, J. M. & Lewis, N. S. Proton exchange membrane electrolysis sustained by water vapor. Energy & Environmental Science 4, 2993-2998, DOI: 10.1039/c1ee01203g (2011).
  • Sun, J. W., Liu, C. & Yang, P. D. Surfactant-Free, Large-Scale, Solution-Liquid-Solid Growth of Gallium Phosphide Nanowires and Their Use for Visible-Light-Driven Hydrogen Production from Water Reduction. Journal of the American Chemical Society 133, 19306-19309, DOI: 10.1021/ja2083398 (2011).
  • Sun, Y. J. et al. Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water. Journal of the American Chemical Society 133, 9212-9215, DOI: 10.1021/ja202743r (2011).