JCAP researchers determined CO2RR reaction mechanisms from Quantum Mechanics free energy Calculations with Explicit water

Quantum Mechanics calculations with a realistic description of water were used to determine the mechanisms from free energy barriers of CO2RR providing an opportunity to use such calculations for designing new selective and active CO2RR catalysts.



JCAP Researchers successfully use combinatorial science to accelerate materials development for solar flues applications

JCAP’s high-throughput experimentation team together with scientists from SSRLdevelop a strategy to enable structure-property mapping of promising light absorbers.



Solar-Driven Reduction of CO2 to Formate at 10% Energy-Conversion Efficiency

Researchers assembled and characterized a device that under 1 Sun illumination operates in two electrolytes with different pHs and reduces CO2 to formate.



Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells

Long-term stability and high efficiency from planar heterojunction halide perovskites is enabled by addressing interfacial degradation and charge transfer resistance limitations.


Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices

JCAP researchers produced a review article on modeling and development of integrated solar-driven water-splitting devices

JCAP_Zhou et al.

Stability and Self-Passivation of Copper Vanadate Photoanodes

Self-passivation under operational conditions is observed for several copper vanadate photoanodes, demonstrating their viability for durable solar fuels devices


Reduction of CO2 and CO using Bifunctional alloys 

Density functional theory is used to study the reduction of CO2 and CO to hydrocarbons through a formyl pathway on alloys with an A3B composition


CO2 electrochemical reduction catalyzed by bimetallic materials at low overpotential

Electrocatalytic reduction of CO2 to highly reduced C2 and C1 products was accomplished on three different phases of nickel-gallium films at low overpotentials



Recent advances in understanding of hot carrier dynamics in chemical systems and solids for energy conversion and catalysis applications

Understanding the mechanisms and factors that govern plasmon energy conversion into hot carries is one of the first steps toward design of efficient materials that can harvest solar energy and catalyze CO2 conversion to fuels.


Efficient Solar-Driven Hydrogen-generating Device Featuring Protected Photoelectrochemical Assembly with Earth-abundant Catalysts

This work demonstrates that protection layers significantly improved the stability of efficient III-V tandem photoelectrodes, that produce thephotovoltage needed to sustain efficient, unassisted hydrogen production.


Photoanode Development Through Combinatorial Integration of mixed-metal Oxide Catalysts on Bismuth vanadate

High-throughput characterization can enable identification of integrated photoanodes assemblies and demonstrates importance of interface engineering



Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals

Finely-tailored complex materials were studied to demonstrate their functionality as promising light absorbers.



JCAP scientists are developing novel theoretical methods to predict the effect that solvents have on material properties - and consequently the photoelectrochemical performance - inside solar-fuels generators.



The study revealed variations in the photoelectrochemical performance due to microscopic terraces in p-WSe2 photocathodes.




The present experimental study used differential electrochemical mass spectrometry (DEMS) focused on product selectivity towards methanol to test the theoretical prediction of selective heterogeneous CO2 reduction to methanol by a bimetallic near-surface alloy.



JCAP Director Harry Atwater in conversation with the Electrochemical Society’s Executive Director Roque Calvo on the eve of the fifth international ECS Electrochemical Energy Summit.


Band Gap Tunability in Sb-Alloyed BiVO4 Quaternary Oxides as Visible-Light Absorbers for Solar Fuel Applications

A photoanode material was discovered using a synthetic approach that may aid in future material discovery.


JCAP Researchers Integrate Theory and Experiment to Discover Novel Photoanodes and Pave the Way for Materials-by-Design Techniques

JCAP’s high-throughput experimentation and theory teams develop a means for rapid identification of the most promising classes of photoelectrochemical materials.


A High-Performance Si Microwire Photocathode Coupled with Ni–Mo Catalyst

Demonstration of a hydrogen-evolving Si-based photoelectrode that exhibits high photocurrent densities and catalytic activities, while using a high mass-loading of an earth-abundant electrocatalyst.


Interface Engineering for Stable, High-Performance Photoanodes

Multifunctional NiOx coatings enable the use of small-band-gap non-oxide semiconductors as photoanodes in integrated and efficient water-splitting systems.



p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation

A study of oxide-based protection and passivation layers designed to prevent corrosion in photoanodes.


Direct Observation of a Semiconductor/Liquid Junction by Operando X-Ray Photoelectron Spectroscopy (XPS)

Operando XPS is used to directly measure the positions of the electronic states of the electrode and the electrolyte.


Fabrication of High Efficiency Perovskite Solar Cells

Novel method for deposition of continuous, pinhole-free methylammonium trihalide perovskites with controlled composition and improved texture.



Transparent Catalytic Nickel Oxide Protecting Films for Photoanodes

Reactively sputtered nickel oxide provides a transparent, catalytic, and conductive layer that stabilizes many efficient and technologically important semiconducting photoanodes.


High-Throughput Synchrotron X-Ray Experimentation for Combinatorial Phase Matching

JCAP worked closely with SLAC beamline scientists and the broader combinatorial materials science community to establish high-throughput X-ray experiments.



Origin of High OER Activity in Ni/Fe Oxyhydroxides

The role of iron in the performance of oxygen-evolving reaction catalysts was investigated using density-functional theory and beamline X-ray techniques.



Hot-Carrier Generation from Plasmon Decay in Energy Conversion

Theoretical study combining plasmon modes with density functional theory to predict initial energy distribution of hot carriers in real metals.




An amorphous, atomic-layer-deposited (ALD) TiO2 coating shown to provide chemical protection, transparency to solar irradiation, and conductivity to holes on planar semiconductors has been extended to three-dimensionally structured Si microwire array devices.


Computational and Experimental Identification of an Earth-Abundant Light Absorber for Solar Water Splitting

Using a combination of experiment and theory, a complex oxide is identified to exhibit a band gap and band edges that are near optimal for photocatalytic water splitting.


Unique Nanostructure Revealed in New OER Electrocatalyst

Using high-throughput experimentation, microscopy, and synchrotron characterization, JCAP discovered a new oxygen-evolution-reaction catalyst.


Selective Reduction of CO2 to Methane

Preliminary study of selective electrochemical 8e/8H+ reduction of CO2 to methane.