Dr. Ager’s research interests include the fundamental electronic and transport characteristics of photovoltaic materials, development of new photoanodes and photocathodes based on abundant elements for solar fuels production, and the development of new oxide- and sulfide-based transparent conductors.

In JCAP, Dr. Ager is investigating interactions of carbon-based supports with CO2-reduction electrocatalysts.  His group is studying nanostructured III-V semiconductor absorbers with minority carrier selective interfaces for efficient and stable operation under CO2RR conditions.  The fundamentals of new test beds for sustained CO2production and product separation is also investigated.

 

Recent Publications

Ager III, J. W. et al. Experimental Demonstrations of Spontaneous, Solar-Driven Photoelectrochemical Water Splitting. Energy & Environmental Science, DOI: 10.1039/C5EE00457H (2015).

Chen, L. et al. p-type Transparent Conducting Oxide / n-type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation. Journal of the American Chemical Society, 2015, DOI: 10.1021/jacs.5b03536 (2015).

Chen, L. et al. Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C 117, 21635-21642, DOI: 10.1021/jp406019r (2013).

Lee, M. H. et al. p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production. Angewandte Chemie-International Edition 51, 10760-10764, DOI: 10.1002/anie.201203174 (2012).

 

 

Additional Information

Electronic Materials Program:  http://emat.lbl.gov/members/ager/