Dr. Bell’s interests are focused on experimental and theoretical studies of heterogeneous catalysis with an emphasis on defining the composition and structure of active sites and the mechanism and kinetics of reactions.

In JCAP, he conducts fundamental studies of the electrochemical oxidation of water and the reduction of CO2, experimental and theoretical investigations of catalyst structure-function relationships, and simulation of electrochemical cells used for the reduction of CO2 to fuels.


Recent Publications

Clark, E. L., Singh, M. R., Kwon, Y. & Bell, A. T. Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO2. Analytical Chemistry 87(15), 8013-8020, DOI: 10.1021/acs.analchem.5b02080 (2015).

Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society 137, 1305–1313, DOI: 10.1021/ja511559d (2015).

Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L. & Bell, A. T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b00105 (2015).

Singh, M. R., Clark, E. L. & Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Physical Chemistry Chemical Physics 17, 18924-18936, DOI: 10.1039/C5CP03283K (2015).


Additional Information

Bell Group site:  http://www.cchem.berkeley.edu/atbgrp/