Dr. Yano’s research interests include:  water oxidation reaction in natural photosynthesis; structure and function of active metal sites in metalloenzymes; X-ray crystallography and X-ray spectroscopy using an X-ray free electron laser; and the application of X-ray-based techniques to artificial photosynthetic systems.  Dr. Yano works on the application of synchrotron X-ray absorption/diffraction methods for the analysis of molecular structures, crystal structures, and electronic structures of inorganic catalysts and studies the relationship between structure and function using vibrational spectroscopy and EPR spectroscopy in organic/organometallic materials.

In JCAP, Dr. Yano will focus on the development and application of X-ray-based techniques to understand artificial photosynthetic components (light-absorbers and catalysts) and assembled systems.  These techniques include X-ray absorption (XAS), emission spectroscopy (XES), resonant inelastic X-ray scattering spectroscopy (RIXS), and X-ray photoemission spectroscopy (XPS), which will be used to study electron transfer and catalytic reaction mechanisms under in situ and operando conditions.

 

Selected Publications

Farmand, M., Landers, A., Lin, J., Feaster, J., Beeman, J., Ye, Y., Clark, E., Higgins, D., Yano, J., Davis, R., Mehta, A., Jaramillo, T., Hahn, C., Drisdell, W. Electrochemical flow cell enabling operando probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction. Physical Chemistry Chemical Physics, DOI: 10.1039/C8CP07423B (2019).

Qian, J., Ye, Y., Yang, H., Yano, J., Crumlin, E., Goddard, W. Initial steps in forming the electrode electrolyte interface: H2O adsorption and complex formation on the Ag(111) surface from combining Quantum Mechanics calculations and X-ray Photoelectron Spectroscopy. J. Am. Chem. Soc., DOI: 10.1021/jacs.8b13672 (2019).

Stoerzinger, K., Favaro, M., Ross, P., Hussain, Z., Liu, Z., Yano, J., Crumlin, E. Stabilizing the Meniscus for Operando Characterization of Platinum During the Electrolyte-Consuming Alkaline Oxygen Evolution Reaction. Topics in Catalysis, DOI: https://doi.org/10.1007/s11244-018-1063-6 (2018).

Zhou, L., Shinde, A., Montoya, J., Singh, A., Gul, S., Yano, J., Ye, Y., Crumlin, E., Richter, M., Cooper, J., Stein, H., Haber, J., Persson, K., Gregoire, J. Rutile alloys in the Mn-Sb-O system stabilize Mn+3 to enable oxygen evolution in strong acid. ACS Catalysis, DOI: 10.1021/acscatal.8b02689 (2018).

Drisdell, W. S., Leppert, L., Sutter-Fella, C. M., Lang, Y., Li, Y., Ngo, Q., Wan, L., Gul, S., Kroll, T., Sokaras, D., Javey, A., Yano, J., Neaton, J., Toma, F., Prendergast, D., and Sharp, I. Determining Atomic-scale Structure and Composition of Organo-lead Halide Perovskites by Combining High-resolution X-ray Absorption Spectroscopy and First-principles Calculations. ACS Energy Letters, DOI: 10.1021/acsenergylett.7b00182 (2017).

Favaro, M., Valero-Vidal, C., Eichhorn, J., Toma, F. M., Rosse, P. N., Yano, J., Liu, Z., and Crumplin, E. J. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J. Mater. Chem. A, DOI: 10.1039/C7TA00409E (2017).

Favaro, M., Xiao, H., Cheng, T., Goddard, W. A., Yano, J., and Crumlin, E. J. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1701405114 (2017).

Favaro, M., Yang, J., Nappini, S., Magnano, E., Toma, F. M., Crumlin, E. J., Yano, J., and Sharp, I. D. Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc., DOI: 10.1021/jacs.7b03211 (2017).

Suram, S. K., Fackler, S. W., Zhou, L., N'Diaye, A. T., Drisdell, W. S., Yano, J., Gregoire, J. M. Combinatorial Discovery of Lanthanum–Tantalum Oxynitride Solar Light Absorbers with Dilute Nitrogen for Solar Fuel Applications. ACS Combinatorial Science, DOI: 10.1021/acscombsci.7b00143 (2017).

Yang, J. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials, DOI: 10.1038/nmat4794 (2016).

Gul, S. et al. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Physical Chemistry Chemical Physics 17, 8901-8912, DOI: 10.1039/C5CP01023C (2015).

Haber, J. A., Anzenburg, E., Yano, J., Kisielowski, C. & Gregoire, J. M. Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, DOI: 10.1002/aenm.201402307 (2015).

Gorlin, Y. et al. In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. Journal of the American Chemical Society 135, 8525-8534, DOI: 10.1021/ja3104632 (2013).

For a complete list of publications, see JCAP publications page.

 

Additional Information

Yachandra/Yano Group:  http://www2.lbl.gov/vkyachan/