THRUST 2: PHOTOELECTROCATALYSIS AND LIGHT CAPTURE

 

accelerating the discovery and in-depth understanding of photocatalysts and photoactive material for solar-driven co2 reduction reaction.


The research in Thrust 2 involves the following themes:

  • Use of experiment and theory to accelerate the identification of semiconductor materials with appropriate band energetics for efficient photocatalysis.

  • Development and characterization of materials for protection of light absorbers to achieve robust photocatalysis with large photovoltage.

  • Understanding and control of catalytic activity and selectivity at the surfaces of photoactive materials.

  • Design of photonic motifs to enhance light harvesting and photocatalysis.

Thrust 2 Coordinator is Dr. John Gregoire

 

Selected Recent Publications

Cooper, J. K., Reyes-Lillo, S., Hess, L., Jiang, C.-M., Neaton, J., Sharp, I. Physical Origins of the Transient Absorption Spectra and Dynamics in Thin-Film Semiconductors: The Case of BiVO4. J. Phys. Chem. C DOI: 10.1021/acs.jpcc.8b06645 (2018).

DuChene, J., Tagliabue, G., Welch A. J., Cheng, W.-H., and Atwater, H. A. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes., Nano Letters, DOI: 10.1021/acs.nanolett.8b00241 (2018). 

Kim, Y., Creel, E., Corson, E., McCloskey, B., Urban, J., Kostecki, R. Surface‐Plasmon‐Assisted Photoelectrochemical Reduction of CO2 and NO3− on Nanostructured Silver Electrodes. Advanced Energy Materials, DOI: https://doi.org/10.1002/aenm.201800363 (2018).  

Liu, G., Eichhorn, J., Jiang, C.-M., Scott, M., Hess, L., Gregoire, J., Haber, J., Sharp, I., Toma, F. Interface engineering for light-driven water oxidation: Unravelling the passivating and catalytic mechanism in BiVO4 overlayers. Sustainable Energy Fuels, DOI: 10.1039/C8SE00473K (2018).

Segev, G., Jiang, C.-M., Cooper, J. K., Eichorn, J., Toma, F., Sharp, I. D. Quantification of the loss mechanisms in emerging water splitting photoanodes through empirical extraction of the spatial charge collection efficiency. Energy&Environmental Science, DOI: 10.1039/C7EE03486E (2018).

Segev, G., Beeman, J., Greenblatt, J., Sharp, I. Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power. Nature Materials, DOI: https://doi.org/10.1038/s41563-018-0198-y (2018).

Zhou, L., Shinde, A., Guevarra, D., Toma, F., Stein, H., Gregoire, J., Haber, J. Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe-Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials, DOI: 10.1021/acsaem.8b01377 (2018).

Zhou, L., Shinde, A., Suram, S., Stein, H., Bauers, S., Zakutayev, A., DuChene, J., Liu, G., Peterson, E., Neaton, J., Gregoire, J. Bi-containing n-FeWO4 Thin Films Provide the Largest Photovoltage and Highest Stability for a sub-2 eV Band Gap Photoanode. ACS Energy Letters, DOI: 10.1021/acsenergylett.8b01514 (2018).  

Brown, A. M. et al. Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. Physical Review Letters, 118 (8), 087401, DOI: 10.1103/PhysRevLett.118.087401 (2017).

Gurudayal, G., Bullock, J., Sranko, D. F., Towle, C. M., Lum, Y., Hettick, M., Scott, M. C., Javey, A., Ager, J. W. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy and Environmental Science, DOI: 10.1039/C7EE01764B (2017).  

Jiang, C.-M., Farmand, M., Wu, C., Liu, Y.-S., Guo, J., Drisdell, W.S., Cooper, J. K., and Sharp, I. D. Electronic Structure, Optoelectronic Properties, and Photoelectrochemical Characteristics of γ-Cu3V2O8 Thin Films. Chemistry of Materials, DOI: 10.1021/acs.chemmater.7b00807 (2017).

Jiang, J., Huang, Z., Xiang, C., Poddar, R., Lewerenz, H.-J., Papadantonakis, K. M., Lewis, N. S., and Brunschwig, B. Nanoelectrical and Nanoelectrochemical Imaging of Pt/p-Si and Pt/p+-Si Electrodes. ChenSusuChem, DOI: 10.1002/cssc.201700893 (2017).

Newhouse, P. F., Reyes-Lillo, S. E., Li, G., Zhou, L., Shinde, A., Guevarra, D., Suram, S. K., Soedarmadji, E., Richetr, M. H., Qu, X., Persson, K., Neaton, J. B., Gregoire, J. M. Discovery and Characterization of a Pourbaix Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chem. Mater, DOI: 10.1021/acs.chemmater.7b03591 (2017).

Omelchenko, S. T. et al. Excitonic Effects in Emerging Photovoltaic Materials: A Case Study in Cu2O. ACS Energy Letters, DOI: 10.1021/acsenergylett.6b00704 (2017).

Sharp, I. D. et al. Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition Metal Oxide Photoanodes. ACS Energy Letters, 2, 139-150, DOI: 10.1021/acsenergylett.6b00586 (2017).

Yan, Q. et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1619940114 (2017).  

Li, Y. et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nature Communications, 7, 12446, DOI: 10.1038/ncomms12446 (2016).

Shinde, A. et al. Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials and Interfaces, DOI: 10.1021/acsami.6b06714 (2016).

Toma, et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 7, 12012, DOI: 10.1038/ncomms12012 (2016).

For complete list of JCAP work, please see publications and research highlight pages.