Research
THRUST 2: PHOTOELECTROCATALYSIS AND LIGHT CAPTURE
accelerating the discovery and in-depth understanding of photocatalysts and photoactive material for solar-driven co2 reduction reaction.
The research in Thrust 2 involves the following themes:
Use of experiment and theory to accelerate the identification of semiconductor materials with appropriate band energetics for efficient photocatalysis.
Development and characterization of materials for protection of light absorbers to achieve robust photocatalysis with large photovoltage.
Understanding and control of catalytic activity and selectivity at the surfaces of photoactive materials.
Design of photonic motifs to enhance light harvesting and photocatalysis.
Thrust 2 Coordinator is Dr. John Gregoire
Selected Recent Publications
Cooper, J. K., Reyes-Lillo, S., Hess, L., Jiang, C.-M., Neaton, J., Sharp, I. Physical Origins of the Transient Absorption Spectra and Dynamics in Thin-Film Semiconductors: The Case of BiVO4. J. Phys. Chem. C DOI: 10.1021/acs.jpcc.8b06645 (2018).
DuChene, J., Tagliabue, G., Welch A. J., Cheng, W.-H., and Atwater, H. A. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes., Nano Letters, DOI: 10.1021/acs.nanolett.8b00241 (2018).
Kim, Y., Creel, E., Corson, E., McCloskey, B., Urban, J., Kostecki, R. Surface‐Plasmon‐Assisted Photoelectrochemical Reduction of CO2 and NO3− on Nanostructured Silver Electrodes. Advanced Energy Materials, DOI: https://doi.org/10.1002/aenm.201800363 (2018).
Liu, G., Eichhorn, J., Jiang, C.-M., Scott, M., Hess, L., Gregoire, J., Haber, J., Sharp, I., Toma, F. Interface engineering for light-driven water oxidation: Unravelling the passivating and catalytic mechanism in BiVO4 overlayers. Sustainable Energy Fuels, DOI: 10.1039/C8SE00473K (2018).
Segev, G., Jiang, C.-M., Cooper, J. K., Eichorn, J., Toma, F., Sharp, I. D. Quantification of the loss mechanisms in emerging water splitting photoanodes through empirical extraction of the spatial charge collection efficiency. Energy&Environmental Science, DOI: 10.1039/C7EE03486E (2018).
Segev, G., Beeman, J., Greenblatt, J., Sharp, I. Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power. Nature Materials, DOI: https://doi.org/10.1038/s41563-018-0198-y (2018).
Zhou, L., Shinde, A., Guevarra, D., Toma, F., Stein, H., Gregoire, J., Haber, J. Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe-Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials, DOI: 10.1021/acsaem.8b01377 (2018).
Zhou, L., Shinde, A., Suram, S., Stein, H., Bauers, S., Zakutayev, A., DuChene, J., Liu, G., Peterson, E., Neaton, J., Gregoire, J. Bi-containing n-FeWO4 Thin Films Provide the Largest Photovoltage and Highest Stability for a sub-2 eV Band Gap Photoanode. ACS Energy Letters, DOI: 10.1021/acsenergylett.8b01514 (2018).
Brown, A. M. et al. Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. Physical Review Letters, 118 (8), 087401, DOI: 10.1103/PhysRevLett.118.087401 (2017).
Gurudayal, G., Bullock, J., Sranko, D. F., Towle, C. M., Lum, Y., Hettick, M., Scott, M. C., Javey, A., Ager, J. W. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy and Environmental Science, DOI: 10.1039/C7EE01764B (2017).
Jiang, C.-M., Farmand, M., Wu, C., Liu, Y.-S., Guo, J., Drisdell, W.S., Cooper, J. K., and Sharp, I. D. Electronic Structure, Optoelectronic Properties, and Photoelectrochemical Characteristics of γ-Cu3V2O8 Thin Films. Chemistry of Materials, DOI: 10.1021/acs.chemmater.7b00807 (2017).
Jiang, J., Huang, Z., Xiang, C., Poddar, R., Lewerenz, H.-J., Papadantonakis, K. M., Lewis, N. S., and Brunschwig, B. Nanoelectrical and Nanoelectrochemical Imaging of Pt/p-Si and Pt/p+-Si Electrodes. ChenSusuChem, DOI: 10.1002/cssc.201700893 (2017).
Newhouse, P. F., Reyes-Lillo, S. E., Li, G., Zhou, L., Shinde, A., Guevarra, D., Suram, S. K., Soedarmadji, E., Richetr, M. H., Qu, X., Persson, K., Neaton, J. B., Gregoire, J. M. Discovery and Characterization of a Pourbaix Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chem. Mater, DOI: 10.1021/acs.chemmater.7b03591 (2017).
Omelchenko, S. T. et al. Excitonic Effects in Emerging Photovoltaic Materials: A Case Study in Cu2O. ACS Energy Letters, DOI: 10.1021/acsenergylett.6b00704 (2017).
Sharp, I. D. et al. Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition Metal Oxide Photoanodes. ACS Energy Letters, 2, 139-150, DOI: 10.1021/acsenergylett.6b00586 (2017).
Yan, Q. et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1619940114 (2017).
Li, Y. et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nature Communications, 7, 12446, DOI: 10.1038/ncomms12446 (2016).
Shinde, A. et al. Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials and Interfaces, DOI: 10.1021/acsami.6b06714 (2016).
Toma, et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 7, 12012, DOI: 10.1038/ncomms12012 (2016).
For complete list of JCAP work, please see publications and research highlight pages.