The research in Thrust 1  involves the following themes:

  • Use of theory intertwined with experiment to accelerate discovery of catalysts.
  • Exploration of catalytic motifs that range from simple binary metal alloys to catalytic centers embedded in environments designed to channel reactivity.
  • Establishment of mechanisms to enable optimization of catalysts.
  • Use of high-throughput experimentation coupled with high-throughput screening efforts to discover new materials and help predict their properties.

Thrust 1 Coordinator is Dr. Thomas Jaramillo.

 

Selected Recent Publications

Cheng, T., Xiao, H. & Goddard, W. A. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. Journal of the American Chemical Society, 138(42), 13802-13805, DOI: 10.1021/jacs.6b08534 (2016).

Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nature Communications, 7, 12695, DOI: 10.1038/ncomms12695 (2016).

Goodpaster, J. D., Bell, A. T.  & Head-Gordon, M. Identification of Possible Pathways for C–C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. The Journal of Physical Chemistry Letters, 7, 1471-1477, DOI: 10.1021/acs.jpclett.6b00358 (2016).

Shi, C., Chan, K., Yoo, J. S. & Norskov, J. K. Barriers of Electrochemical CO2 Reduction on Transition Metals. Org. Process Res. Dev., DOI: 10.1021/acs.oprd.6b00103 (2016).

Torelli, D. A. et al. Nickel–Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials. ACS Catalysis, 6, 2100-2104, DOI: 10.1021/acscatal.5b02888 (2016).

Clark, E. L., Hahn, C., Jaramillo, T. F., Bell, A. B. Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b08607 (2017).

Hahn, C., Hatsukade, T., Kim, Y.-G., Vailionis, A., Baricuatro, J. H., Higgins, D. C., Nitopi, S. A., Soriaga, M. P., and Jaramillo, T. F. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1618935114 (2017).

Han, Z., Kortlever, R., Chen H.-Y., Peters, J. C., and Agapie, T. CO2 Reduction Selective for C≥2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Central Science, DOI: 10.1021/acscentsci.7b00180 (2017).

Kirk, C., Chen, L. D., Siahrostami, S., Karamad, M., Badjich, M., Voss, J., Norskov, J., Chan, K. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Central Science, 3(12), 1286-1293, DOI: 10.1021/acscentsci.7b00442 (2017).

Singh, M. R., Goodpaster, J. D., Weber, A. Z., Head-Gordon, M., Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1713164114 (2017).

Ulissi, Z. W., Tang, M. T., Xiao, J., Liu, X., Torelli, D. A., Karamad, M., Cummins, K., Hahn, C., Lewis, N. S., Jaramillo, T. F., Chan, K., Norskov, J. K. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction. ACS Catalysis, DOI: 10.1021/acscatal.7b01648 (2017).

Zhang, H., Goddard, W. A., Lu, Q., Cheng, M.-J. The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO2 reduction and hydrogen evolution. Phys. Chem. Chem. Phys, 20, 2549-2557, DOI: 10.1039/C7CP08153G (2018).

Cave, E. R., Shi, C., Kuhl, K. P., Hatsukade, T., Abram, D. N., Hahn, C., Chan, K., Jaramillo, T. Trends in the Catalytic Activity of Hydrogen Evolution during CO2 Electroreduction on Transition Metals, ACS Catalysis, 8, 3035-3040, DOI: 10.1021/acscatal.7b03807 (2018).

For complete list of JCAP work, please see publications and research highlight pages.