Heterogeneous Catalysis and Surface Science / Part I:  Surface Science in JCAP Laboratories

Heterogeneous Catalysis and Surface Science research in JCAP focuses on the basic understanding of the relationships among the structure, composition, and reactivity of electrocatalysts.  Knowledge gained from surface science experimentation can be implemented toward the discovery of better heterogeneous catalysts for solar-fuel production from carbon dioxide and water.


  • Soriaga, M. P. et al. Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis. Surface Science 631, 285-294, DOI: 10.1016/j.susc.2014.06.028 (2015).
  • Javier, A. et al. A DEMS Study of the Reduction of CO2, CO, and HCHO Pre-Adsorbed on Cu Electrodes: Empirical Inferences on the CO2RR Mechanism. Electrocatalysis, 1-5, DOI: 10.1007/s12678-015-0246-1 (2015).
  • Kim, Y. G. et al. The Evolution of the Polycrystalline Copper Surface, First to Cu(111) and Then to Cu(100), at a Fixed CO2RR Potential: A Study by Operando EC-STM. Langmuir 30, 15053-15056, DOI: 10.1021/la504445g (2014).
  • Baricuatro, J. et al. Heterogenization of a Water-Insoluble Molecular Complex for Catalysis of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions. Electrocatalysis, 1-3, DOI: 10.1007/s12678-014-0200-7 (2014).
  • Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proc. Nat. Acad. Sci. 112, 3612 (2015).
  • Saadi, F. H. et al. CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. Journal of Physical Chemistry C 118, 29294-29300, DOI: 10.1021/jp5054452 (2014).
  • Carim, A. I. et al. Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. Journal of Materials Chemistry A 2, 13835-13839, DOI: 10.1039/c4ta02611j (2014).
  • Velazquez, J. M. et al. Synthesis and Hydrogen-evolution Activity of Tungsten Selenide Thin Films Deposited on Tungsten Foils. J. Electroanal. Chem. 716, 45 (2014).
  • Javier, A. et al. C–H activation and metalation at electrode surfaces: 2,3-dimethyl-1,4-dihydroxybenzene on Pd(pc) and Pd(111) studied by TLE, HREELS and DFT. Dalton Transactions 43, 14798-14805, DOI: 10.1039/c4dt02137a (2014).
  • Kim, Y. G. et al. Cathodic regeneration of a clean and ordered Cu(1 0 0)-(1×1) surface from an air-oxidized and disordered electrode: An operando STM study. Journal of Electroanalytical Chemistry 734, 7-9, DOI: 10.1016/j.jelechem.2014.09.010 (2014).
  • Baricuatro, J. H. et al. Structure and composition of Cu(hkl) surfaces exposed to O2 and emersed from alkaline solutions: Prelude to UHV-EC studies of CO2 reduction at well-defined copper catalysts. Journal of Electroanalytical Chemistry 716, 101-105, DOI: 10.1016/j.jelechem.2013.10.001 (2014).
  • Saadi, F. H. et al. Operando Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction. ACS Catalysis 4, 2866-2873, DOI: 10.1021/cs500412u (2014).
  • Sanabria-Chinchilla, J. et al. Immobilization-Enabled Proton Reduction Catalysis by a Di-iron Hydrogenase Mimic. Electrocatalysis 5, 5-7, DOI: 10.1007/s12678-013-0157-y (2014).
  • Baricuatro, J. H. et al. High-resolution electron energy loss spectroscopy of anions chemisorbed on electrode surfaces: The effect of counter cations. Electrochem. Commun. 27, 176-179, DOI: 10.1016/j.elecom.2012.11.005 (2013).
  • Chmielowiec, B. et al. Molecular catalysis that transpires only when the complex is heterogenized: studies of a hydrogenase complex surface-tethered on polycrystalline and (1 1 1)-faceted gold by EC, PM-FT-IRRAS, HREELS, XPS and STM. Journal of Electroanalytical Chemistry, DOI: 10.1016/j.jelechem.2013.12.025 (2013).
  • Sanabria-Chinchilla, J. et al. Chemisorption-Isotherm Measurements at Electrode Surfaces by Quantitative High-Resolution Electron Energy Loss Spectroscopy. Electrocatalysis 4, 101-103, DOI: 10.1007/s12678-013-0125-6 (2013).

Heterogeneous Catalysis and Surface Science / Part II:  Surface Science at the Beamlines



  • Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society 137, 1305–1313, DOI: 10.1021/ja511559d (2015).
  • Gul, S. et al. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Physical Chemistry Chemical Physics 17, 8901-8912, DOI: 10.1039/C5CP01023C (2015).
  • Sanchez Casalongue, H. G. et al. In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction. Angewandte Chemie-International Edition 53, 7169-7172, DOI: 10.1002/anie.201402311 (2014).
  • Sanchez Casalongue, H. G. et al. Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C 118, 29252-29259, DOI: 10.1021/jp505394e (2014).
  • Haber, J. A. et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy & Environmental Science 7, 682-688, DOI: 10.1039/c3ee43683g (2014).
  • Sanchez Casalongue, H. et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Communications 4, 6, DOI: 10.1038/ncomms3817 (2013).
  • Friebel, D. et al. On the chemical state of Co oxide electrocatalysts during alkaline water splitting. Physical Chemistry Chemical Physics 15, 17460-17467, DOI: 10.1039/c3cp52981a (2013).
  • Haber, J. A., Anzenburg, E., Yano, J., Kisielowski, C. & Gregoire, J. M. Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, DOI: 10.1002/aenm.201402307 (2015).